0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

TSP信任互聯(lián)協(xié)議入門

OpenHarmony TSC ? 2024-10-23 15:03 ? 次閱讀

TSP信任互聯(lián)協(xié)議入門

WENJING CHU

OpenHarmony項目群技術(shù)指導(dǎo)委員會Web3標(biāo)準(zhǔn)TSG主任

什么是TSP信任互聯(lián)協(xié)議?

TSP是英文Trust Spanning Protocol的縮寫,翻譯為信任互聯(lián)協(xié)議。其中 ‘Spanning’ 也可以理解為 ’跨越‘,即跨越不同的信任域的協(xié)議?;ヂ?lián)網(wǎng)起源于不同的物理網(wǎng)絡(luò)之間需要 ’跨越‘ 的訴求,比如當(dāng)時的局域網(wǎng)有以太網(wǎng)(Ethernet)、Token Bus、Token Ring等多種,各自有自己的地址格式、物理介質(zhì)、和控制協(xié)議,加上局域網(wǎng)之間需要另一種廣域網(wǎng)來把它們聯(lián)接到一起,這就衍生了Inter-network 網(wǎng)絡(luò)之間的網(wǎng)絡(luò)的概念和協(xié)議(即 Internetworking Protocol 縮寫為IP),簡稱Internet。

如果說IP協(xié)議聯(lián)接了不同的網(wǎng)絡(luò),那么TSP協(xié)議可以理解為聯(lián)接了不同的信任域。TSP的作者最初把它叫做“信任域互聯(lián)協(xié)議”(Inter-Trust Domain Protocol or ITDP)。什么是信任域呢?信任域可以定義為一個采用統(tǒng)一的數(shù)字標(biāo)識符和信任認(rèn)證機制的計算機系統(tǒng)的集合。比如采用公開密鑰架構(gòu)(PKI)下的數(shù)字證書認(rèn)證機構(gòu)(CA)來給每個系統(tǒng)發(fā)放X.509格式證書,系統(tǒng)之間通過對X.509證書的認(rèn)證來驗明真實身份,那么這樣的一群系統(tǒng)之間就可以互相“信任”了。在這個例子里,所謂的“信任”的基礎(chǔ)是大家都可以信任這些CA,尤其是根CA,我們把這樣的一群系統(tǒng)叫做一個信任域,信任域之內(nèi)的系統(tǒng)間的信任是可以有統(tǒng)一標(biāo)準(zhǔn)可以遵循的。

信任域可以有無數(shù)多個。即使是大家都采用同樣的PKI標(biāo)準(zhǔn),每個不同的根CA可以派生出一個不同的信任域。同時不少應(yīng)用場景可能會采用不同的技術(shù)標(biāo)準(zhǔn),比如證書的內(nèi)容、格式、線下的治理條例、甚至法律規(guī)章等都在造就不同的信任域。

單一的信任域不能完全包含整個互聯(lián)網(wǎng)里無數(shù)的系統(tǒng)和多元的應(yīng)用場景。比如,企業(yè)之間可能沒有上下附屬關(guān)系;國際之間可能無法統(tǒng)一對治理規(guī)則的認(rèn)可;針對每個個人的系統(tǒng)(或未來的AI Agent)的數(shù)量級會太大,導(dǎo)致集中由CA發(fā)布與管理證書的方式不現(xiàn)實成本高;另外單一的CA的安全風(fēng)險可能太高,等等。這些因數(shù)導(dǎo)致互聯(lián)網(wǎng)中實際上采用PKI的系統(tǒng)常常是有限的,而且問題很多。互聯(lián)網(wǎng)的成功在于其分布式體系結(jié)構(gòu),PKI的缺點則在于它的集中性,集中化的系統(tǒng)難以規(guī)模化,難以接受多元化的應(yīng)用需求,系統(tǒng)維護成本不斷提高,而且有單一系統(tǒng)單點故障的風(fēng)險。

這些新的挑戰(zhàn)需要用更加分布式的信任技術(shù)來克服。除去單一的中心化模塊才能讓整個系統(tǒng)滿足互聯(lián)網(wǎng)級別的規(guī)?;螅瑵M足無數(shù)種應(yīng)用場景的多元化要求,滿足區(qū)域之間數(shù)據(jù)治理的合規(guī)要求,以及克服單點故障的魯棒性要求,等等。

但是如果只是采用多種多個信任域,把互聯(lián)網(wǎng)分割成了一個個的孤島,那就違背的互聯(lián)網(wǎng)的初心和優(yōu)點了。所以我們必須同時發(fā)展一個可以讓不同的信任域能夠互聯(lián)又保持信任的機制,這就是信任互聯(lián)協(xié)議(Trust Spanning Protocol, or TSP)。

TSP要解決什么問題?

互聯(lián)網(wǎng)的原始設(shè)計本身不包含一個內(nèi)涵的信任機制,比如IP的地址和數(shù)據(jù)包內(nèi)容很容易被篡改,所以發(fā)送與接收雙方都不能確認(rèn)IP數(shù)據(jù)包是不是真的從源地址來,到目標(biāo)地址去,也不能確認(rèn)收到的數(shù)據(jù)是真實數(shù)據(jù)。因為互聯(lián)網(wǎng)遍布全球的任何角落,無法在物理網(wǎng)絡(luò)層面克服這些問題,我們必須在上層協(xié)議上來解決。我們把這一類問題歸結(jié)為真實性問題(Authenticity),包括發(fā)送和接收方的身份真實性(Identity Authenticity),也包括數(shù)據(jù)的真實性(Message Authenticity)。對應(yīng)地講,就是我們需要一套身份標(biāo)識符及其認(rèn)證機制,加上數(shù)據(jù)簽名(或MAC)及其認(rèn)證機制。

第二類的問題是數(shù)據(jù)保密的問題(Confidentiality)。這類問題大部分開發(fā)人員和用戶都比較熟悉,即所謂的加密機制以保證沒有其他第三方可以讀到數(shù)據(jù)包中的內(nèi)容。也有人把這類問題叫做保護個人隱私,但只包括對數(shù)據(jù)內(nèi)容的隱私保護(Content Privacy)。為了準(zhǔn)確起見,我們采用私密性(Confidentiality)來表示這一類問題。我們熟悉的TLS協(xié)議就是主要用來支持私密性的。私密性一般必須首先滿足真實性,沒有真實性的話私密性也就無從談起,比如說A送一個私密信息給B,如果第三方C能夠冒充是B,那么什么加密都是沒有用的。所以我們需要把Authenticity和Confidentiality綁在一起使用。比如TLS采用X.509格式的證書來驗證身份。

那么為什么需要設(shè)計一個新的協(xié)議而不直接使用成熟的TLS呢?首先,TLS(和相關(guān)的HTTPS協(xié)議等)采用PKI和基于X.509的證書。如上所述,這樣的系統(tǒng)無法滿足現(xiàn)代和未來互聯(lián)網(wǎng)的需求,我們希望采用分布式無中心點(即去中心化)的可認(rèn)證標(biāo)識符。其次,現(xiàn)有的TLS實現(xiàn)都只要求服務(wù)器端提供證書,不包括客戶端,從而導(dǎo)致客戶的認(rèn)證只能依靠微弱的密碼方式或損害隱私的聯(lián)邦認(rèn)證方式來實現(xiàn)。另外,即使采用雙向TLS,對客戶端和服務(wù)器都發(fā)證書,PKI管理的效率很低,所以證書數(shù)據(jù)的質(zhì)量非常微弱,實時性差,安全效益很低而部署成本很高。這也是X.509證書的使用沒有遍布互聯(lián)網(wǎng)的根本原因。我們認(rèn)為真正有效的解決方案需基于分布式系統(tǒng)。更重要的是,即使在某些應(yīng)用場景規(guī)模不大可以采用PKI下的X.509證書,它所提供的安全系數(shù)還是不強。比如TLS在認(rèn)證了證書之后通過協(xié)議產(chǎn)生一個對稱的密鑰,所以從根本上講無法區(qū)分發(fā)送方和接收方,也就不能滿足不可抵賴性。這些問題嚴(yán)重地限制可以實現(xiàn)的安全性和隱私保護的要求。

所以,我們需要一套新的更強的安全協(xié)議,基于分布式無中心的架構(gòu),充分保證真實性和私密性,來作為未來應(yīng)用的安全基礎(chǔ)。這就是TSP協(xié)議設(shè)計的出發(fā)點。

TSP還提供了一套全新的工具來解決第三類問題:元數(shù)據(jù)的私密性(Meta-data Privacy)。這方面的問題在以前(包括TLS)的技術(shù)方案中考慮很少,但現(xiàn)在越來越影響到用戶的隱私。由于互聯(lián)網(wǎng)的底層(比如TCP/IP)沒有私密性,即使我們的應(yīng)用采用了端到端的加密,其數(shù)據(jù)流的TCP端口和IP地址等元數(shù)據(jù)還是可以在網(wǎng)上觀察到的,并且可以與其他信息聯(lián)合在一起從而了解到很多個人信息。TSP協(xié)議為解決這第三類問題提供了基于中間點(Intermediaries)的解決方案,即可保護元數(shù)據(jù)的私密性,又可以實現(xiàn)TSP系統(tǒng)的規(guī)模化,滿足整個互聯(lián)網(wǎng)規(guī)模的需求。

TSP的主要技術(shù)特點有哪些?

綜上所述,在TSP協(xié)議中,真實性是首要保證的,同時可根據(jù)實際應(yīng)用需求選擇數(shù)據(jù)私密性和/或元數(shù)據(jù)私密性。TSP的主要技術(shù)特點可以總結(jié)為以下幾個方面:

  • 多種多類可認(rèn)證標(biāo)識符(Verifiable Identifiers),尤其包括去中心化標(biāo)識符(Decentralized Identifiers,DID)

作為信任域之間的橋梁,TSP是為多種類可認(rèn)證標(biāo)識符(Verifiable Identifier)設(shè)計的,包括去中心化的標(biāo)識符(DID)但不僅限于此。比如我們正在開發(fā)基于傳統(tǒng)X.509格式的did:x509,基于WEB的did:web,以及基于自認(rèn)證標(biāo)識符(Self-Certifying Identifier, SCID)的did:webs、did:tdw (trusted web)、和KERI AID等。未來可以出現(xiàn)更多的可認(rèn)證標(biāo)識符以滿足多元的應(yīng)用需求,只要它們滿足TSP定義的“可認(rèn)證性”的要求。

  • 有方向性的信任關(guān)系(Directional Relationship)

A信任B并不代表B信任A,這是個常理,也常常是許多應(yīng)用的安全和隱私保障機制里重要的區(qū)分,但現(xiàn)有的安全體系一般都是不完全區(qū)分通訊的雙方的。TSP的基礎(chǔ)信任架構(gòu)是一種有方向性的信任關(guān)系(Directional Relationship):A -> B,其中A和B以Verifiable Identifier來代表,而他們之間的通訊通過非對稱密鑰算法來實現(xiàn)。

  • 采用基于非對稱密鑰的真實性和私密性保障(Public Key Authenticated Encryption)

同時保障真實性和私密性是大部分應(yīng)用場景的公共要求,但是以前的實現(xiàn)通常最終歸結(jié)為發(fā)送方和接收方之間的共享對稱密鑰的,從而在信任關(guān)系上無法區(qū)分他們,也不能滿足“不可抵賴性”(Non-Repudiation)。以前這樣的對稱性設(shè)計是因為效益原因,對稱性算法遠(yuǎn)比非對稱算法成本低,但也是源于Client/Server模式的信任關(guān)系:一般都是服務(wù)器方在主導(dǎo)從而私密性不是主要考慮。在TSP架構(gòu)下,通訊的雙方是對稱平行的。TSP采用公開密鑰認(rèn)證加密算法(Public Key Authenticated Encryption, PKAE),基于RFC9180(HPKE)定義的格式,同時也支持開源軟件中常用的Nacl/Libsodium實現(xiàn)的Sealed Box。這兩種實現(xiàn)是基本一致的,我們希望將來他們會最終統(tǒng)一為一種兼容的實現(xiàn)。

PKAE本身仍然有一些值得重視的安全和隱私缺陷,比如在密鑰泄露時可能被第三方冒充的弱點(Key Compromise Inpersonation, KCI),TSP通過發(fā)送方簽名來克服這個弱點。另外TSP采用ESSR算法來加強某些配置下的接收方不可冒充性的功能(Receiver UnForgeability, RUF)等。

結(jié)合這些非對稱性算法和協(xié)議技術(shù),TSP為互聯(lián)網(wǎng)通訊提供了最安全又最私密的保障。

  • 采用嵌套式信息包來加強元數(shù)據(jù)私密性(Nested Messages)

隨著互聯(lián)網(wǎng)應(yīng)用的普及,很多原先不太重要的設(shè)計細(xì)節(jié)的缺點浮出水面。元數(shù)據(jù)的泄露就是其中之一,包括IP、TCP、HTTPS等等協(xié)議的Header中的諸多信息。把這些元信息和其他個人信息交叉索引,尤其是采用AI算法,可以非常準(zhǔn)確地還原許多個人信息。所以個人信息的保護常常不能停留在數(shù)據(jù)內(nèi)容層面,也需要在元數(shù)據(jù)層面采取保護措施。TSP的嵌套式信息包可以隱蔽內(nèi)部真正使用的VID,避免被交叉索引算法所用。

  • 采用路由信息包,通過中間點系統(tǒng)保證規(guī)?;瘜崿F(xiàn),并同時加強元數(shù)據(jù)私密性(Routed Messages)

雖然點對點的信任關(guān)系是TSP協(xié)議的基礎(chǔ),在實際部署中因為多種原因,引入高性能的中間服務(wù)節(jié)點是至關(guān)重要的:幾乎所用的現(xiàn)代互聯(lián)網(wǎng)應(yīng)用都采用大型數(shù)據(jù)中心作為服務(wù)器;移動手機應(yīng)用必須解決間斷性聯(lián)網(wǎng)的問題,某個服務(wù)器必須替不能永久聯(lián)網(wǎng)的節(jié)點作為信息存儲器;我們也需要解決用戶間互相發(fā)現(xiàn)的問題,大型中間服務(wù)可以幫助這方面的實現(xiàn);同時網(wǎng)路的路由,以避開出問題的節(jié)點和不可信的資源等,仍然需要某種路由協(xié)議經(jīng)過中間節(jié)點來解決。

TSP不僅僅引入的中間點的結(jié)構(gòu),同時設(shè)計了可以通過中間點加強對用戶元數(shù)據(jù)私密性保護的路由機制。TSP的路由機制為上層應(yīng)用提供在互聯(lián)網(wǎng)基礎(chǔ)上的端對端路由信息包(Routed Messages)通訊,其中的中間節(jié)點無需知道確切完整的路由途徑,從而為兩端的用戶提供又高性能又安全私密的通用信息包服務(wù)。如果有必要,上層應(yīng)用還可以將前一節(jié)里介紹的嵌套式信息包和路由結(jié)合在一起,更加加強路由協(xié)議下的元信息私密性。

  • 支持最現(xiàn)代的加密和認(rèn)證算法,支持后量子計算加密和認(rèn)證算(Post-Quantum Cryptography, or PQC)

HPKE定義了一套指定加密和認(rèn)證算法的統(tǒng)一規(guī)格,因此TSP可以不僅支持現(xiàn)階段最新最現(xiàn)代的算法,而且可以在必要時快速地采用新的算法,無需TSP協(xié)議本身的改動。這個優(yōu)點也包括了對后量子密碼算法的支持。TSP的另一個重要特點是每個TSP的數(shù)據(jù)都采用自編碼單元(Self Encoding),這更是對協(xié)議的未來演變的高度保障(Future-Proof)。

  • 采用高效益編碼系統(tǒng)

非常高效益的編碼系統(tǒng)又是另一個TSP的技術(shù)特點。TSP的數(shù)據(jù)包結(jié)構(gòu)(Message Structure,即用戶內(nèi)容除外的包的結(jié)構(gòu)部分)采用可組合事件流表達式(Composible Event Streaming Representation, CESR)來實現(xiàn)數(shù)據(jù)結(jié)構(gòu)的線性轉(zhuǎn)化(Serialization)?!翱山M合”意味著在“編碼”和“串聯(lián)“兩個操作之間的可交換性,也就是說,先編碼再串聯(lián)與先串聯(lián)在編碼會得到完全同樣的結(jié)果??山M合性為軟件實現(xiàn)提供很多的方便,包括支持高性能的流處理實現(xiàn)。CESR同時設(shè)計了高效的編碼表,在TSP這樣高程度使用密碼操作的協(xié)議里,這種效益的成本優(yōu)勢非常明顯。另外,如上一節(jié)所述,CESR是一個完全自編碼的數(shù)據(jù)格式,它支持更好的未來可擴張可演變性。TSP協(xié)議的內(nèi)容部分(即用戶數(shù)據(jù)主體)則可以是任何常見的協(xié)議,包括JSON、CBOR、MsgPak等。這也是自定義格式的一個優(yōu)點,數(shù)據(jù)單元可以采用每個應(yīng)用所需的格式而不必強求統(tǒng)一。

  • 與網(wǎng)絡(luò)載體解耦

TSP可以完全與網(wǎng)絡(luò)載體解耦,它可以用于任何底層傳輸協(xié)議之上,也可以用在非互聯(lián)網(wǎng)載體中,比如云存儲、Bluetooth、NFC、甚至QR或信件等等。這樣的設(shè)計讓它的應(yīng)用面非常廣,同時開發(fā)者可以根據(jù)應(yīng)用要求作合適的調(diào)整,又不妨礙協(xié)議的信任互聯(lián)可互操作性。

  • 為多種多元的上層應(yīng)用設(shè)計

TSP的設(shè)計遵循最小化的原則。作為一個互聯(lián)協(xié)議,TSP對應(yīng)用層提出的限制越小越好,TSP才能越被普遍地采用。TSP為確實需要的信任任務(wù)提供必須的互操作性服務(wù),其他功能一律排除在外,留給應(yīng)用按具體情況來實現(xiàn)。這樣的設(shè)計理念將TSP和許多其他類似的協(xié)議區(qū)分開來,TSP只是一個工具,真正的應(yīng)用將會是應(yīng)用層軟件和TSP的結(jié)合。

  • 開源協(xié)議實現(xiàn)和編程界面

TSP的開源實現(xiàn)也是一個重要的特性。TSP的SDK使用Rust語言編程,大幅提高加密和認(rèn)證代碼的可靠性和安全性,防止常見的C語言的內(nèi)存安全性弱點,同時又支持高效高性能。為了給常見的開發(fā)場景提供方便,TSP的開發(fā)社區(qū)也將提供相關(guān)的編程環(huán)境Bindings,比如JS、Python、WASM、C、Android、iOS等等。TSP的SDK為上層軟件提供方便又簡易安全的編程界面,讓原先非常復(fù)雜又高風(fēng)險的信任協(xié)議的編程變得簡單清晰。

哪里可以找到關(guān)于TSP協(xié)議的學(xué)習(xí)材料?

如何參與TSP協(xié)議的開發(fā)和應(yīng)用社區(qū)?


  • OpenHarmony 開源社區(qū)Web3標(biāo)準(zhǔn)TSG

    Web3標(biāo)準(zhǔn)TSG是技術(shù)指導(dǎo)委員會(TSC)下屬子領(lǐng)域技術(shù)支撐組,旨在針對Web3提出的一系列互聯(lián)網(wǎng)(Internet and Web)的基本體系架構(gòu)、平臺、與商業(yè)模式上的創(chuàng)新,分析相關(guān)技術(shù),理清概念,探索新的機會點,以未來互聯(lián)網(wǎng)的標(biāo)準(zhǔn)化開放互通為目標(biāo),為OpenHarmony 社區(qū)提出發(fā)展方向。
    歡迎對TSP的研究、開發(fā)、與應(yīng)用感興趣的同業(yè)朋友與大學(xué)師生共同參與,詳情見OpenHarmony官網(wǎng)。
  • TSP協(xié)議的標(biāo)準(zhǔn)草案在Trust over IP(ToIP)Foundation的GitHub上發(fā)布

    W. Chu, S. Smith, “Trust Spanning Protocol(TSP)Specification”, Implementer’s Draft, https://trustoverip.github.io/tswg-tsp-specification。

  • TSP協(xié)議的Rust語言實現(xiàn)和其他相關(guān)的軟件則在OpenWallet Foundation的TSP Lab項目中

    項目GitHub:https://github.com/openwallet-foundation-labs/tsp。

    這個項目包含TSP協(xié)議的各個方面,不僅僅是協(xié)議本身,也包括多種可認(rèn)證的DID實現(xiàn),不同的傳輸協(xié)議支持,不同的編程語言的Bindings,多種應(yīng)用,多種安全算法和編碼等等多個方面。

其它進一步的技術(shù)信息請參照后面附錄里的參考材料。

附錄-參考材料

【1】W. Chu, S. Smith, “Trust Spanning Protocol (TSP) Specification”, Implementer’s Draft, https://trustoverip.github.io/tswg-tsp-specification.

【2】The OpenWallet Foundation TSP Lab Project, https://github.com/openwallet-foundation-labs/tsp.

【3】R. Barnes, K. Bhargavan, B. Lipp, C. Wood, RFC 9180, “Hybrid Public Key Encryption”, https://datatracker.ietf.org/doc/rfc9180/. Feb 2022.

【4】Libsodium (Nacl) Documentation,https://doc.libsodium.org/.

【5】J. H. An, “Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses”, Cryptology ePrint Archive, Paper 2001/079, https://eprint.iacr.org/2001/079.

【6】M. Spony, A. Guy, M. Sabadello, D. Reed, et al, “Decentralized Identifiers (DIDs) v1.0”, https://www.w3.org/TR/did-core/. W3C Recommendation, 19 July 2022.

【7】S. Smith, K. Griffin, “Composable Event Streaming Representation (CESR)”, v1.0, https://trustoverip.github.io/tswg-cesr-specification/.

【8】D. Hardman, S. Curran, S. Curren, et al, “ Peer DID Method Specification”, v1.0, https://identity.foundation/peer-did-method-spec/.

【9】S. Curran, J. Jordan, A. Whitehead, B. Richter, “Trust DID Web - did:tdw”, Draft, https://bcgov.github.io/trustdidweb/.

【10】P. Feairheller, D. Hardman, S. Smith, L. Byrd, et al, “ToIP did:webs Method Specification v0.9.15”, https://trustoverip.github.io/tswg-did-method-webs-specification/.

【11】M. Prorock, O. Steele, O. Terbu et al, “did:web Method Specification”, 06 May 2023, https://w3c-ccg.github.io/did-method-web/.

【12】E. Scouten, W. Chu (co-Chairs), et al, “did:x509 Method Specification”, Work in progress in the Trust over IP (ToIP) X.509 based DID Task Force X5VTF. https://github.com/trustoverip/tswg-did-x509-method-specification.





原文標(biāo)題:TSP信任互聯(lián)協(xié)議入門

文章出處:【微信公眾號:OpenHarmony TSC】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    TSP7H4001-SP用戶指南

    電子發(fā)燒友網(wǎng)站提供《TSP7H4001-SP用戶指南.pdf》資料免費下載
    發(fā)表于 11-28 14:57 ?0次下載
    <b class='flag-5'>TSP</b>7H4001-SP用戶指南

    簡單認(rèn)識芯盾時代零信任業(yè)務(wù)安全平臺

    近年來,我國零信任網(wǎng)絡(luò)訪問市場保持高速增長態(tài)勢。IDC報告顯示,2023年中國零信任網(wǎng)絡(luò)訪問解決方案市場的規(guī)模達23.3億元,同比增長25.5%。
    的頭像 發(fā)表于 11-01 16:28 ?299次閱讀

    IPv6協(xié)議互聯(lián)網(wǎng)通信協(xié)議第六版

    IPv6是互聯(lián)網(wǎng)升級演進的必然趨勢、網(wǎng)絡(luò)技術(shù)創(chuàng)新的重要方向、網(wǎng)絡(luò)強國建設(shè)的基礎(chǔ)支撐。近些年,隨著我國大力推動IPv6規(guī)模部署和應(yīng)用,目前中國的IPv6滲透率已超過70%。對于車載以太網(wǎng)來說,目前
    的頭像 發(fā)表于 09-05 08:05 ?584次閱讀
    IPv6<b class='flag-5'>協(xié)議</b>—<b class='flag-5'>互聯(lián)網(wǎng)通信協(xié)議</b>第六版

    芯盾時代入選《現(xiàn)代企業(yè)零信任網(wǎng)絡(luò)建設(shè)應(yīng)用指南》

    近日,國內(nèi)知名網(wǎng)絡(luò)安全媒體安全牛重磅發(fā)布了《現(xiàn)代企業(yè)零信任網(wǎng)絡(luò)建設(shè)應(yīng)用指南(2024版)》報告(以下簡稱“報告”)。芯盾時代憑借在零信任市場卓越的品牌影響力、領(lǐng)先的產(chǎn)品方案、豐富的實踐案例,實力入選2024年度零信任領(lǐng)域十大代表
    的頭像 發(fā)表于 08-28 09:45 ?496次閱讀

    一文了解TCP/IP協(xié)議

    TCP/IP協(xié)議是現(xiàn)代計算機網(wǎng)絡(luò)通信的基礎(chǔ),是互聯(lián)網(wǎng)及局域網(wǎng)廣泛使用的一套協(xié)議。TCP/IP協(xié)議集包括許多協(xié)議,其中最重要的是傳輸控制
    的頭像 發(fā)表于 08-07 15:38 ?1949次閱讀
    一文了解TCP/IP<b class='flag-5'>協(xié)議</b>

    華納云:TCP IP協(xié)議的發(fā)展和優(yōu)勢

    TCP/IP(Transmission Control Protocol/Internet Protocol,傳輸控制協(xié)議/互聯(lián)網(wǎng)協(xié)議)是互聯(lián)網(wǎng)和現(xiàn)代計算機網(wǎng)絡(luò)的基礎(chǔ)
    的頭像 發(fā)表于 07-25 16:49 ?502次閱讀

    ICMPv4協(xié)議互聯(lián)網(wǎng)控制報文協(xié)議

    ICMP協(xié)議全稱是InternetControlMessageProtocol,即互聯(lián)網(wǎng)控制報文協(xié)議。其中,ICMPv4和ICMPv6分別指用于IPv4和IPv6的I
    的頭像 發(fā)表于 07-25 08:25 ?741次閱讀
    ICMPv4<b class='flag-5'>協(xié)議</b>—<b class='flag-5'>互聯(lián)</b>網(wǎng)控制報文<b class='flag-5'>協(xié)議</b>

    HMI界面設(shè)計如何提升智能駕駛的人機交互信任

    隨著智能駕駛技術(shù)的不斷進步,人們對于自動駕駛系統(tǒng)的信任成為了一個重要的議題。雖然技術(shù)取得了顯著進展,但在用戶與系統(tǒng)之間建立信任方面仍存在一些關(guān)鍵問題。本文將闡述用戶不信任智能駕駛的因素,以及如何從
    的頭像 發(fā)表于 06-14 08:27 ?811次閱讀
    HMI界面設(shè)計如何提升智能駕駛的人機交互<b class='flag-5'>信任</b>?

    以守為攻,零信任安全防護能力的新范式

    引言 在當(dāng)今的數(shù)字化時代,網(wǎng)絡(luò)安全已成為各個組織面臨的一項重大挑戰(zhàn)。隨著技術(shù)的快速發(fā)展,攻擊手段也在不斷演變和升級,傳統(tǒng)的安全防御策略已經(jīng)無法完全應(yīng)對新興的安全威脅。在這種背景下,零信任安全
    的頭像 發(fā)表于 05-27 10:18 ?978次閱讀
    以守為攻,零<b class='flag-5'>信任</b>安全防護能力的新范式

    TI Z-stack2007 協(xié)議入門實驗

    電子發(fā)燒友網(wǎng)站提供《TI Z-stack2007 協(xié)議入門實驗 .pdf》資料免費下載
    發(fā)表于 05-10 09:14 ?0次下載

    網(wǎng)絡(luò)傳輸協(xié)議有幾種?

    網(wǎng)絡(luò)傳輸協(xié)議是一種規(guī)定計算機在網(wǎng)絡(luò)中進行通信的規(guī)則或標(biāo)準(zhǔn)。常見的網(wǎng)絡(luò)傳輸協(xié)議有以下幾種: 1. TCP/IP協(xié)議:TCP/IP(傳輸控制協(xié)議/互聯(lián)
    的頭像 發(fā)表于 04-02 16:04 ?1475次閱讀

    mqtt協(xié)議和tcp協(xié)議區(qū)別

    MQTT協(xié)議和TCP協(xié)議在設(shè)計和應(yīng)用上存在以下主要區(qū)別: 1. 起源與設(shè)計:MQTT協(xié)議誕生于1999年互聯(lián)網(wǎng)初期,而TCP協(xié)議則誕生于19
    的頭像 發(fā)表于 04-01 09:15 ?1632次閱讀

    IPv6是互聯(lián)網(wǎng)通信的未來

    在當(dāng)今數(shù)字化時代,互聯(lián)網(wǎng)已成為我們?nèi)粘I钪胁豢苫蛉钡囊徊糠?,隨著智能設(shè)備的興起,需要更多的IP地址。目前用于互聯(lián)網(wǎng)通信的協(xié)議是IPv4,但IPv4的可用地址已經(jīng)耗盡,這就是為什么新的協(xié)議
    的頭像 發(fā)表于 03-29 14:17 ?460次閱讀
    IPv6是<b class='flag-5'>互聯(lián)</b>網(wǎng)通信的未來

    什么是零信任?零信任的應(yīng)用場景和部署模式

    ? 零信任是新一代網(wǎng)絡(luò)安全理念,并非指某種單一的安全技術(shù)或產(chǎn)品,其目標(biāo)是為了降低資源訪問過程中的安全風(fēng)險,防止在未經(jīng)授權(quán)情況下的資源訪問,其關(guān)鍵是打破信任和網(wǎng)絡(luò)位置的默認(rèn)綁定關(guān)系。 一、零信任安全
    的頭像 發(fā)表于 03-28 10:44 ?2987次閱讀

    TCP/IP協(xié)議數(shù)據(jù)的處理流程

    TCP/IP協(xié)議的設(shè)計目標(biāo)是提供一種通用、靈活且可擴展的協(xié)議體系,使得不同種類的設(shè)備和系統(tǒng)能夠互相通信,實現(xiàn)互聯(lián)網(wǎng)的互聯(lián)互通。
    發(fā)表于 02-03 16:30 ?1605次閱讀
    TCP/IP<b class='flag-5'>協(xié)議</b>數(shù)據(jù)的處理流程