“不是我不明白,這世界變化快”,崔健在20世紀(jì)寫(xiě)下的這句歌詞,放在公有云市場(chǎng)也同樣適用。技術(shù)風(fēng)向的變化之快,讓不少人感到驚訝。
2023年初大模型、生成式 AI的起飛,也帶來(lái)了向量數(shù)據(jù)庫(kù)的爆火。投融資項(xiàng)目爆發(fā)式增長(zhǎng),頭部公有云廠商都推出了AI向量數(shù)據(jù)庫(kù)的相關(guān)產(chǎn)品。
然而一年狂飆之后,市場(chǎng)逐漸退潮,全球最著名的 AI 項(xiàng)目之一AutoGPT在2024年初宣布,不再使用向量數(shù)據(jù)庫(kù)。因此有人質(zhì)疑,向量數(shù)據(jù)庫(kù)又涼了?
不過(guò),隨著5月份公有云廠商們掀起價(jià)格戰(zhàn),接連調(diào)低大模型API的價(jià)格,高性?xún)r(jià)比的大模型+向量數(shù)據(jù)庫(kù),在行業(yè)應(yīng)用、企業(yè)市場(chǎng)又顯現(xiàn)出了一定的商業(yè)價(jià)值。
向量數(shù)據(jù)庫(kù)這一年的潮起潮落,究竟是火了還是涼了?大模型正在卷價(jià)格,向量數(shù)據(jù)庫(kù)又該卷什么?公有云廠商又在這一市場(chǎng)發(fā)揮了什么作用?今天我們就來(lái)聊聊這些問(wèn)題。
向量數(shù)據(jù)庫(kù),剛剛開(kāi)始
新技術(shù)的火爆,必然會(huì)伴隨炒作和泡沫,但向量作為大模型理解世界的數(shù)據(jù)形式,向量數(shù)據(jù)庫(kù)作為AI革命重要基建的位置,長(zhǎng)期來(lái)看是不會(huì)動(dòng)搖的。
為什么這么說(shuō)?
向量數(shù)據(jù)庫(kù)并不是一種特別新的數(shù)據(jù)庫(kù)技術(shù),在AI領(lǐng)域已經(jīng)應(yīng)用了七八年,谷歌在2015年就宣布使用RankBrain語(yǔ)義檢索來(lái)處理搜索任務(wù)。如果說(shuō)數(shù)據(jù)庫(kù)是數(shù)據(jù)的“硬盤(pán)”,那么,向量數(shù)據(jù)庫(kù)就是更適合AI體質(zhì)的“硬盤(pán)”。
其“AI原生”的體質(zhì),具體表現(xiàn)在幾個(gè)方面:
1.更高的效率。AI算法,要從圖像、音頻和文本等海量的非結(jié)構(gòu)化數(shù)據(jù)中學(xué)習(xí),提取出以向量為表示形式的“特征”,以便模型能夠理解和處理。因此,向量數(shù)據(jù)庫(kù)比傳統(tǒng)基于索引的數(shù)據(jù)庫(kù)有明顯優(yōu)勢(shì)。
2.更低的成本。大模型要從一種新技術(shù)轉(zhuǎn)化為產(chǎn)業(yè)價(jià)值,必須達(dá)到合理的投入產(chǎn)出比,而向量數(shù)據(jù)庫(kù)可以有效減少存儲(chǔ)和計(jì)算成本。一個(gè)公開(kāi)數(shù)據(jù)是,通過(guò)騰訊云向量數(shù)據(jù)庫(kù),QQ音樂(lè)人均聽(tīng)歌時(shí)長(zhǎng)提升3.2%、騰訊視頻有效曝光人均時(shí)長(zhǎng)提升1.74%、QQ瀏覽器成本降低37.9%,就在于檢索效率、運(yùn)行穩(wěn)定性、運(yùn)營(yíng)效率、推薦算法等,有了較大的提升。
3.更強(qiáng)的數(shù)據(jù)安全。有企業(yè)直言:“沉淀了幾十年的內(nèi)部數(shù)據(jù)是我的核心競(jìng)爭(zhēng)力,讓我無(wú)償去公開(kāi)給大模型做訓(xùn)練,我肯定不愿意?!毕胱龃竽P停€要確保數(shù)據(jù)的隱私安全,就必須與數(shù)據(jù)庫(kù)產(chǎn)品做好配合,這給向量數(shù)據(jù)庫(kù)的本地部署帶來(lái)了廣闊的需求。
4.更大的擴(kuò)展性。隨著大模型走向行業(yè)應(yīng)用,垂直領(lǐng)域的AI用例不斷增多,洶涌的數(shù)據(jù)洪潮和存算任務(wù),會(huì)帶來(lái)大量向量搜索的需求。而向量數(shù)據(jù)庫(kù)嵌入向量的長(zhǎng)度不受限制,具有良好的擴(kuò)展性,可以根據(jù)AI用例和模型而變化,更好地處理大規(guī)模數(shù)據(jù)集。
從大模型技術(shù)標(biāo)桿的OpenAI發(fā)布的GPT-4o和即將發(fā)布的GPT-5消息來(lái)看,以及國(guó)內(nèi)外商業(yè)化大模型的進(jìn)展來(lái)看,大模型的技術(shù)路線還沒(méi)有發(fā)生顛覆性的變革,因此落地應(yīng)用還是需要向量檢索和向量數(shù)據(jù)庫(kù)。
由此可以肯定,向量數(shù)據(jù)庫(kù)市場(chǎng)必然還會(huì)迎來(lái)一輪增長(zhǎng)。趨于冷靜,只是2023年熱情過(guò)度高漲的適當(dāng)回調(diào)。
兩大新勢(shì)力,云是方向
據(jù)東北證券預(yù)測(cè),到2030年,全球向量數(shù)據(jù)庫(kù)市場(chǎng)規(guī)模有望達(dá)到 500 億美元,國(guó)內(nèi)向量數(shù)據(jù)庫(kù)市場(chǎng)規(guī)模有望超過(guò)600億人民幣。向量數(shù)據(jù)庫(kù)市場(chǎng)吸引了“群雄逐鹿”,從引爆到飽和,進(jìn)展迅猛,
傳統(tǒng)數(shù)據(jù)庫(kù)廠商不必多說(shuō),既有相應(yīng)的能力建設(shè),也有一定的客戶基礎(chǔ),推出相關(guān)產(chǎn)品是必然。一些在AI領(lǐng)域積淀已久的科技大廠,如谷歌、微軟、Meta、百度等大廠,都有向量數(shù)據(jù)庫(kù)的技術(shù)積累,也都可以向外輸出相關(guān)能力和產(chǎn)品。
除了這些常規(guī)面孔,向量數(shù)據(jù)庫(kù)市場(chǎng)也吸引了新的參與者。
作為這一輪大模型投資熱和創(chuàng)業(yè)熱的主要目標(biāo)之一,向量數(shù)據(jù)庫(kù)領(lǐng)域誕生了不少創(chuàng)新創(chuàng)業(yè)公司。比如AI創(chuàng)業(yè)新秀Pinecone就是閉源的領(lǐng)跑者,憑借良好的開(kāi)箱即用的產(chǎn)品體驗(yàn),獲得了非常大的增長(zhǎng),B輪估值達(dá)到7.5億美元。其他競(jìng)爭(zhēng)者大多建立在開(kāi)源項(xiàng)目的基礎(chǔ)上。
不過(guò),作為創(chuàng)業(yè)公司,長(zhǎng)期盈利能力還有待驗(yàn)證。一個(gè)主要原因,是客戶大多是嘗鮮、實(shí)驗(yàn)性質(zhì)。
企業(yè)需要先將非結(jié)構(gòu)化的私密數(shù)據(jù),進(jìn)行一個(gè)小的模型,進(jìn)行向量化,產(chǎn)生一個(gè)向量的矩陣,再存儲(chǔ)到向量數(shù)據(jù)庫(kù)里,來(lái)供大模型學(xué)習(xí)和檢索。這個(gè)過(guò)程涉及大量的工程化,會(huì)耗費(fèi)企業(yè)許多開(kāi)發(fā)人員、時(shí)間成本,一開(kāi)始可能會(huì)因?yàn)锳I大模型很火而對(duì)向量數(shù)據(jù)庫(kù)產(chǎn)生興趣,但能否真正在業(yè)務(wù)中落地還是個(gè)未知數(shù)。因此,長(zhǎng)期付費(fèi)意愿還有較大的不確定性。
另一股積極參與的新勢(shì)力,就是公有云廠商。
不是所有企業(yè)都有能力自建大模型所需要的基礎(chǔ)設(shè)施,通過(guò)MaaS(模型即服務(wù))業(yè)務(wù)來(lái)訓(xùn)練應(yīng)用大模型,是更靈活的選擇。此外,很多政企客戶往往會(huì)選擇公有云或行業(yè)云來(lái)滿足其業(yè)務(wù)需求,對(duì)云數(shù)據(jù)庫(kù)的關(guān)注度和接受度上升,而這些用戶在探索大模型時(shí),會(huì)傾向于以整體解決方案的形式來(lái)交付,這就給了云廠商參與游戲的機(jī)會(huì),同時(shí)也要求云廠商提供向量數(shù)據(jù)庫(kù)的全棧支持。
如今頭部云廠商基本建立了全生命周期AI化的向量數(shù)據(jù)庫(kù)。有數(shù)據(jù)顯示,企業(yè)原先接入一個(gè)大模型需要花1個(gè)月左右時(shí)間,使用某公有云的向量數(shù)據(jù)庫(kù)后,3天時(shí)間即可完成,極大降低了企業(yè)的接入成本。
更何況,前不久火山引擎、阿里云、百度智能云等都圍繞大模型API價(jià)格,打起了互相抄底的“價(jià)格戰(zhàn)”,意味著AI創(chuàng)新門(mén)檻的降低,而AI應(yīng)用市場(chǎng)的用戶規(guī)模擴(kuò)大,也會(huì)帶動(dòng)向量數(shù)據(jù)庫(kù)的使用需求。
綜上,整個(gè)云AI市場(chǎng)的格局還在快速變化之中,風(fēng)物長(zhǎng)宜放眼量,AI Native的向量數(shù)據(jù)庫(kù),前景仍然值得期待。
接下來(lái),向量數(shù)據(jù)庫(kù)卷什么?
有人可能會(huì)問(wèn)了,大模型開(kāi)始卷價(jià)格,那向量數(shù)據(jù)庫(kù)市場(chǎng)正在卷什么?
需要注意的是,大模型降價(jià)是以云廠商為主,而零一萬(wàn)物等創(chuàng)業(yè)公司已經(jīng)明確表示會(huì)以技術(shù)創(chuàng)新為競(jìng)爭(zhēng)力,而不會(huì)(與云廠商)對(duì)標(biāo)價(jià)格。云廠商在AI基礎(chǔ)設(shè)施、商業(yè)生態(tài)、市場(chǎng)規(guī)模效應(yīng)上的既定優(yōu)勢(shì),確實(shí)也會(huì)表現(xiàn)在向量數(shù)據(jù)庫(kù)市場(chǎng)。
目前來(lái)看,公有云廠商有幾重特殊優(yōu)勢(shì),或許會(huì)讓向量數(shù)據(jù)庫(kù)加速走向商業(yè)成功:
- 多元化部署。垂直行業(yè)大模型,數(shù)據(jù)都是私有機(jī)密的,客戶一般不愿意放到公有云上,這對(duì)一部分支持混合多云的云廠商是一大利好,通過(guò)私有部署、分布式、混合云等多種方案,打消行業(yè)客戶將數(shù)據(jù)放到云端的現(xiàn)實(shí)疑慮。
2.一體化AI能力。向量數(shù)據(jù)庫(kù)的火爆,本質(zhì)是由AI驅(qū)動(dòng)的,而AI Native時(shí)代的數(shù)據(jù)工程,還有許多復(fù)雜問(wèn)題尚待解決,比如檢索效率,在處理大規(guī)模數(shù)據(jù)的并行任務(wù)時(shí),保持快速響應(yīng)時(shí)間是一個(gè)挑戰(zhàn),需要優(yōu)化索引結(jié)構(gòu)和搜索算法;高負(fù)載下的系統(tǒng)穩(wěn)定性,需要確保數(shù)據(jù)庫(kù)系統(tǒng)具備高可用性和容錯(cuò)能力,防止服務(wù)中斷;存儲(chǔ)海量的向量數(shù)據(jù),成本效益比要進(jìn)一步優(yōu)化……目前來(lái)看,云廠商具備從底層算力集群、Maas模型平臺(tái)到全棧工具鏈的AI能力,有望通過(guò)技術(shù)協(xié)同創(chuàng)新,持續(xù)優(yōu)化向量數(shù)據(jù)庫(kù)的性能和成本。
3.產(chǎn)業(yè)服務(wù)能力。各行業(yè)對(duì)AI與業(yè)務(wù)的結(jié)合熱情高漲,但大多還處于嘗試探索期,需要結(jié)合自身場(chǎng)景、AI應(yīng)用、IT設(shè)施等多種因素試錯(cuò)并迭代。這個(gè)過(guò)程中,隨叫隨到、幫助客戶及時(shí)解決問(wèn)題的ToB服務(wù)能力,也是非??粗氐摹I罡a(chǎn)業(yè)的公有云,有望降低很多企業(yè)在AI技術(shù)革命中的機(jī)會(huì)成本。
有人說(shuō),AI云市場(chǎng)越來(lái)越卷了,隨著大模型性能邊際效益不斷走低,云廠商不得不用低價(jià)換規(guī)模。但有句話:“東方不亮西方亮,黑了南方有北方?!敝灰性茝S商在AI領(lǐng)域的產(chǎn)品陣營(yíng)足夠龐大,用多元化綜合優(yōu)勢(shì)鎖定用戶,那么即使大模型收益下降,在商業(yè)回報(bào)上也不愁沒(méi)有回旋的余地。
從這個(gè)角度看,或許公有云市場(chǎng)下一個(gè)卷起來(lái)的,就是向量大模型。
-
數(shù)據(jù)庫(kù)
+關(guān)注
關(guān)注
7文章
3799瀏覽量
64388 -
向量
+關(guān)注
關(guān)注
0文章
55瀏覽量
11664 -
大模型
+關(guān)注
關(guān)注
2文章
2448瀏覽量
2701
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論