0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

鈮酸鋰調(diào)控固態(tài)電解質(zhì)電場結(jié)構(gòu)促進(jìn)鋰離子高效傳輸!

清新電源 ? 來源:中國科學(xué)材料 ? 2024-05-09 10:37 ? 次閱讀

聚合物基固態(tài)電解質(zhì)得益于其易加工性,最有希望應(yīng)用于下一代固態(tài)鋰金屬電池。目前,聚合物基態(tài)電解質(zhì)的離子電導(dǎo)率提升策略多為加入導(dǎo)鋰陶瓷以構(gòu)建離子傳輸通道,其提升程度有限。電場在鋰離子輸運(yùn)過程中存在重要影響,目前研究中有關(guān)電場對(duì)鋰離子傳輸?shù)挠绊憴C(jī)制尚不明確。

近日,清華大學(xué)深圳國際研究生院康飛宇教授、賀艷兵副教授和呂偉副教授等人在Science China Materials發(fā)表研究論文,將兼具高離子電導(dǎo)率和高介電常數(shù)的鈮酸鋰嵌入聚偏氟乙烯基體中,設(shè)計(jì)了一種新型復(fù)合固態(tài)電解質(zhì)。

本文要點(diǎn)

1)鈮酸鋰顆粒有效調(diào)節(jié)電解質(zhì)內(nèi)部電場結(jié)構(gòu),增強(qiáng)了離子輸運(yùn)方向電場強(qiáng)度,實(shí)現(xiàn)了離子電導(dǎo)率的大幅提升(7.39×10?4 S cm?1,25°C)。

2) 該電解質(zhì)匹配高鎳正極和鋰金屬負(fù)極的固態(tài)電池可穩(wěn)定循環(huán)1000次以上,容量保持率為72%。 該研究為設(shè)計(jì)下一代固態(tài)鋰電池用高離子電導(dǎo)復(fù)合固態(tài)電解質(zhì)提供了新的策略。

802e0a06-0da7-11ef-a297-92fbcf53809c.png

Figure1.Working mechanisms of solid-state NCM811 /Li batteries using NPC and PVDF electrolytes during long cycles. (a) In the NCM811/PVDF/Li batteries, the local aggregation of electric field in PVDF hinders the Li+ uniform transport and promotes Li dendrite growth. (b) In the NCM811/NPC/Li batteries, the enhanced electric field in NPC along the Li-ion transport direction and uniform electric field at the interface with Li metal contribute to fast Li+ conduction and uniform Li platting/stripping.

804dcd1e-0da7-11ef-a297-92fbcf53809c.png

Figure2.Morphology and physicochemical characterizations of PVDF and NPC electrolytes. Surface SEM image of (a) PVDF and (b) NPC-30 electrolytes. (c) Cross-sectional SEM images of NPC-30 electrolyte. (d) Arrhenius plots of ionic conductivities of PVDF and NPC-based electrolytes. (e) Real part (?r′) of relative permittivity at different frequencies for PVDF and NPC-30 polymer films. AFM morphology images of (f) PVDF and (g) NPC-30 and the corresponding interfacial potential images (h, i).

807750a8-0da7-11ef-a297-92fbcf53809c.png

Figure3.Properties of Li-symmetric cells using PVDF and NPC-30 electrolytes. (a) CCD of the Li/PVDF/Li and Li/NPC-30/Li cells. Cycling curves of Li-symmetrical cells with PVDF and NPC-based electrolytes at current density of (b) 0.1?mA?cm?2, (c) 0.5?mA?cm?2 and (d) 1?mA?cm?2. SEM images of the Li metal surface after cycling at 0.1?mA?cm?2 for 100 h using (e) PVDF and (f) NPC electrolytes. Potential distribution of the cross-section for the interface between Li metal and (g) PVDF, (h) NPC-30 electrolyte from KPFM. (i) 3D ToF-SIMs visual maps of the distributions of LiF+, Li2CO3+ and Li2S+ species at the interface of Li metal after cycling for 100 h using PVDF and NPC-30.

809777b6-0da7-11ef-a297-92fbcf53809c.png

Figure4.Properties of solid-state NCM811/Li solid-state batteries using PVDF and NPC-30 electrolytes. Long-term cycling performance of NCM811/Li cells using PVDF and NPC-30 electrolyte at (a) 0.5?C and (b) 1?C. (c) Rate capacities of NCM811/Li cells using PVDF and NPC-30 electrolyte. (d) Cycling performance of NCM811/Li cells with higher cathode loading of 4?mg?cm?2. Interfacial potential images of (e) NCM811/NPC-30 and (f) NCM/PVDF. Gauss statistic distribution histograms of interfacial potential for (g) NCM811/NPC-30 and (h) NCM811/PVDF. TEM and FFT images of cycled NCM811 cathode with (i) NPC-30 and (j) PVDF in full cells.

80cbbf8a-0da7-11ef-a297-92fbcf53809c.png

Figure5.Characterizations of the ion transport mechanism of PVDF and NPC-30 electrolytes. (a) DFT results for adsorption energies. (b) AFM image and (c) corresponding nano-IR overlap of C=O vibration of DMF at 1663?cm?1. (d) HAADF-TEM image of NPC-30 electrolyte and (e) corresponding EELS mapping of Li element and (f) EDS mapping of Nb element. (g) 6Li NMR spectra of pristine LiNbO3. (h) 6Li NMR spectra of rinsed LiNbO3 from NPC-30 after cycling in the 6Li/NPC-30/6Li cell.



審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:清華大學(xué)深研院康飛宇&賀艷兵&呂偉等:鈮酸鋰調(diào)控固態(tài)電解質(zhì)電場結(jié)構(gòu)促進(jìn)鋰離子高效傳輸

文章出處:【微信號(hào):清新電源,微信公眾號(hào):清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    通過電荷分離型共價(jià)有機(jī)框架實(shí)現(xiàn)對(duì)金屬電池固態(tài)電解質(zhì)界面的精準(zhǔn)調(diào)控

    (-3.04 V vs SHE),被認(rèn)為是次世代電池的最優(yōu)選擇。然而,金屬負(fù)極的實(shí)際應(yīng)用面臨諸多挑戰(zhàn),其中最關(guān)鍵的問題是枝晶的生長和副反應(yīng)的發(fā)生。這些問題不僅會(huì)導(dǎo)致電池壽命急劇下降,還會(huì)引發(fā)嚴(yán)重的安全隱患,如短路和熱失控。 固態(tài)
    的頭像 發(fā)表于 11-27 10:02 ?308次閱讀
    通過電荷分離型共價(jià)有機(jī)框架實(shí)現(xiàn)對(duì)<b class='flag-5'>鋰</b>金屬電池<b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質(zhì)</b>界面的精準(zhǔn)<b class='flag-5'>調(diào)控</b>

    固態(tài)金屬電池的陽極夾層設(shè)計(jì)

    金屬電解質(zhì)的消耗。鋰離子的不均勻沉積/剝離導(dǎo)致枝晶的生長和電池安全風(fēng)險(xiǎn),阻礙了金屬電池(LMB)的進(jìn)一步開發(fā)和商業(yè)應(yīng)用。由于對(duì)機(jī)理的
    的頭像 發(fā)表于 10-31 13:45 ?210次閱讀
    全<b class='flag-5'>固態(tài)</b><b class='flag-5'>鋰</b>金屬電池的<b class='flag-5'>鋰</b>陽極夾層設(shè)計(jì)

    固態(tài)電池中復(fù)合陽極上固體電解質(zhì)界面的調(diào)控

    采用固體聚合物電解質(zhì)(SPE)的固態(tài)金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲(chǔ)能領(lǐng)域具有很大的應(yīng)用前景。
    的頭像 發(fā)表于 10-29 16:53 ?419次閱讀
    <b class='flag-5'>固態(tài)</b>電池中復(fù)合<b class='flag-5'>鋰</b>陽極上固體<b class='flag-5'>電解質(zhì)</b>界面的<b class='flag-5'>調(diào)控</b>

    固態(tài)電池技術(shù)的最新進(jìn)展

    的核心在于使用固態(tài)電解質(zhì)代替?zhèn)鹘y(tǒng)的液態(tài)電解質(zhì)。這種固態(tài)電解質(zhì)不僅能夠提供離子
    的頭像 發(fā)表于 10-28 09:18 ?701次閱讀

    無極電容器有電解質(zhì)嗎,無極電容器電解質(zhì)怎么測

    無極電容器通常存在電解質(zhì)。電解質(zhì)在無極電容器中起著重要作用,它可以增加電容器的電容量和穩(wěn)定性。然而,電解質(zhì)也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發(fā)表于 10-01 16:45 ?382次閱讀

    鋰離子電池的優(yōu)缺點(diǎn)

    鋰離子電池是一種二次電池(充電電池),其工作原理主要依賴于鋰離子在正極和負(fù)極之間的移動(dòng)。在充電過程中,鋰離子從正極脫嵌,經(jīng)過電解質(zhì)嵌入負(fù)極,負(fù)極處于富
    的頭像 發(fā)表于 05-06 17:20 ?2700次閱讀

    固態(tài)金屬電池的外部壓力研究

    目前,使用易燃液體電解質(zhì)的商用鋰離子電池?zé)o法滿足日益增長的高能量密度和安全性要求。用無機(jī)固態(tài)電解質(zhì)(SSE)取代傳統(tǒng)的液體電解質(zhì)有望在很大程
    的頭像 發(fā)表于 04-26 09:02 ?926次閱讀
    <b class='flag-5'>固態(tài)</b><b class='flag-5'>鋰</b>金屬電池的外部壓力研究

    低損耗薄膜光集成器件的研究進(jìn)展研究

    近年來,得益于薄膜晶圓離子切片技術(shù)和低損耗微納刻蝕工藝的飛速發(fā)展,薄膜
    的頭像 發(fā)表于 04-24 09:11 ?1481次閱讀
    低損耗薄膜<b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>光集成器件的研究進(jìn)展研究

    基于薄膜的高性能集成光子學(xué)研究

    3月25日,Marko Lon?ar 博士出席光庫科技與 HyperLight 聯(lián)合主辦的“薄膜光子學(xué)技術(shù)與應(yīng)用”論壇,并發(fā)表了題為“基于薄膜
    的頭像 發(fā)表于 03-27 17:18 ?914次閱讀
    基于薄膜<b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>的高性能集成光子學(xué)研究

    請(qǐng)問聚合物電解質(zhì)是如何進(jìn)行離子傳導(dǎo)的呢?

    在目前的聚合物電解質(zhì)體系中,高分子聚合物在室溫下都有明顯的結(jié)晶性,這也是室溫下固態(tài)聚合物電解質(zhì)的電導(dǎo)率遠(yuǎn)遠(yuǎn)低于液態(tài)電解質(zhì)的原因。
    的頭像 發(fā)表于 03-15 14:11 ?1234次閱讀
    請(qǐng)問聚合物<b class='flag-5'>電解質(zhì)</b>是如何進(jìn)行<b class='flag-5'>離子</b>傳導(dǎo)的呢?

    不同類型的電池的電解質(zhì)都是什么?

    電解質(zhì)通過促進(jìn)離子在充電時(shí)從陰極到陽極的移動(dòng)以及在放電時(shí)反向的移動(dòng),充當(dāng)使電池導(dǎo)電的催化劑。離子是失去或獲得電子的帶電原子,電池的電解質(zhì)由液
    的頭像 發(fā)表于 02-27 17:42 ?1583次閱讀

    芯片與精密劃片機(jī):科技突破引領(lǐng)半導(dǎo)體制造新潮流

    使用作為基底材料,可以有效地提高芯片的性能和可靠性。由于芯片的
    的頭像 發(fā)表于 02-18 15:39 ?745次閱讀
    <b class='flag-5'>鈮</b><b class='flag-5'>酸</b><b class='flag-5'>鋰</b>芯片與精密劃片機(jī):科技突破引領(lǐng)半導(dǎo)體制造新潮流

    固態(tài)電解質(zhì)離子傳輸機(jī)理解析

    固態(tài)電解質(zhì)離子的遷移通常是通過離子擴(kuò)散的方式實(shí)現(xiàn)的。離子擴(kuò)散是指離子從一個(gè)位置移動(dòng)到另一個(gè)位置
    發(fā)表于 01-19 15:12 ?2770次閱讀
    <b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質(zhì)</b><b class='flag-5'>離子</b><b class='flag-5'>傳輸</b>機(jī)理解析

    關(guān)于固態(tài)電解質(zhì)的基礎(chǔ)知識(shí)

    固態(tài)電解質(zhì)在室溫條件下要求具有良好的離子電導(dǎo)率,目前所采用的簡單有效的方法是元素替換和元素?fù)诫s。
    的頭像 發(fā)表于 01-19 14:58 ?1.9w次閱讀
    關(guān)于<b class='flag-5'>固態(tài)</b><b class='flag-5'>電解質(zhì)</b>的基礎(chǔ)知識(shí)

    淺談固態(tài)電池原材料及技術(shù)難點(diǎn)

    固態(tài)電池與目前主流的傳統(tǒng)鋰離子電池最大的不同在于電解質(zhì)。固態(tài)電池則是使用固體電解質(zhì),替代了傳統(tǒng)鋰離子
    發(fā)表于 01-19 14:49 ?4.3w次閱讀
    淺談<b class='flag-5'>固態(tài)</b>電池原材料及技術(shù)難點(diǎn)