0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

用于定量相位和散射成像的透射結構照明顯微鏡

UPOLabs ? 來源:UPOLabs ? 2024-04-29 18:27 ? 次閱讀

定量相位顯微鏡(QPM)利用物波的相位信息,不僅可以提供相差圖像,還可以提供樣品三維形貌和折射率分布的定量信息。

更高的空間分辨率有利于解析樣本的更精細細節(jié)。然而,在設計顯微物鏡時,通常需要在更高的空間分辨率和更小的視場(FOV)之間取得平衡。結構照明顯微鏡(SIM)是一種寬視場、微創(chuàng)、超分辨率成像技術,可以將無法分辨的高頻信息降檔為系統(tǒng)支撐區(qū)域的低頻下降,如圖1所示。

478d4b6e-03c8-11ef-a297-92fbcf53809c.png

圖 1

此外,SIM還被證明具有與共聚焦顯微鏡相當的光學切片能力。因此,SIM在生物醫(yī)學成像中得到了廣泛的應用,特別是活細胞的長期觀察動力學。到目前為止,具有結構照明的QPM已經使用光柵或空間光調制器(SLM)實現(xiàn),并且相位成像模式通常與其他成像模式(如熒光成像)隔離開來。因此,由于同一樣本缺乏多維信息,QPM的值受到限制。

在本文中,我們提出了一種基于DMD的光學顯微鏡,它集成了多種成像模式。首先,基于結構照明的QPM能夠在沒有熒光標記的情況下提供樣品的定量相位圖像。其次,相干SIM提供具有分辨率增強的未標記樣品的吸收/散射圖像。第三,該系統(tǒng)與熒光成像模式集成,可提供同一樣品的額外(功能/生化)信息。

系統(tǒng)原理

該系統(tǒng)的原理圖如圖2所示,使用二極管激光器作為照明源。在依次被反射鏡M1和M2反射后,激光束被耦合到光纖中并發(fā)送到裝置。在輸出端,來自光纖的光被鏡頭L1準直,并由反射鏡M3引導至DMD(UPOLabs的HDSLM756D空間光調制器,1920×1080像素,像素大小7.56μm),入射角為24°。在DMD上,兩組具有正交方向和五相位移的條紋圖案依次加載到DMD中。DMD上顯示的條紋圖案由望遠鏡系統(tǒng)L2-L3和L4-MO1進一步中繼,并最終投射到放置在MO1和MO2公共焦平面上的樣品上。

在條紋照明下,然后由望遠鏡系統(tǒng)MO2-L5將樣品成像到圖像平面。相機CCD1記錄不同成像模式的衍射圖像,qDIC中的散焦圖像和相干SIM中的聚焦圖像。同時,來自樣品的發(fā)射光(熒光)將沿照明光的相反方向傳播,然后被相機CCD2收集。相機CCD1和CCD2與DMD同步,產生每秒15幀的采集速度,為每個通道提供亞秒級的成像速度。

47982872-03c8-11ef-a297-92fbcf53809c.jpg

圖 2

實驗與結果

qDIC活細胞顯微鏡成像

在第一個實驗中,進行了驗證性實驗,以證明在沒有熒光標記的情況下對活樣品成像的qDIC。為此,使用活小鼠脂肪干細胞作為相樣。實驗結果如圖3所示,通過比較表明,qDIC不僅可以可視化高對比度的透明樣品,還可以為我們提供樣品光程差(OPD)的定量信息。

479b9480-03c8-11ef-a297-92fbcf53809c.jpg

圖 3 小鼠脂肪干細胞的qDIC成像。

SiO2 顆粒的相干 SIM 成像

在第二個實驗中,通過對SiO2磁珠(直徑:500 nm)進行成像,證明了使用相干結構照明的分辨率增強非熒光/散射成像。實驗結果如圖4所示.很明顯,相干結構照明在SiO2磁珠上提供了高分辨率圖像。

47a97d70-03c8-11ef-a297-92fbcf53809c.jpg

圖 4 500nm SiO2 磁珠的相干 SIM 成像。

百合花藥的雙模態(tài)(散射/熒光)成像

在第三個實驗中,以百合花藥為樣本,展示了所提出的SIM裝置的雙模態(tài)(非熒光散射/熒光)成像能力。實驗結果如圖5所示.熒光圖像經彩色濾光片濾波后由相機CCD2捕獲,與使用均勻照明獲得的寬視場圖像相比,SIM圖像顯示出更詳細的結構和更清晰的背景。此外,熒光圖像在干凈的背景中顯示了清晰的花粉結構(具有自發(fā)熒光)。SIM圖像(透射)和熒光圖像(反射)對于同一樣品具有相反的對比度,這一點也很明顯。

47bdb420-03c8-11ef-a297-92fbcf53809c.jpg

圖 5 百合花藥的雙模態(tài)成像。



審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 二極管
    +關注

    關注

    147

    文章

    9647

    瀏覽量

    166589
  • 激光器
    +關注

    關注

    17

    文章

    2518

    瀏覽量

    60407
  • 光調制器
    +關注

    關注

    0

    文章

    85

    瀏覽量

    8385
  • SLM
    SLM
    +關注

    關注

    0

    文章

    81

    瀏覽量

    6849

原文標題:用于定量相位和散射成像的透射結構照明顯微鏡

文章出處:【微信號:UPOLabs,微信公眾號:UPOLabs】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    透射電子顯微鏡(TEM):基礎知識概覽

    透射電子顯微鏡(TEM)概述透射電子顯微鏡(TEM)是材料科學、納米技術等領域中不可或缺的研究工具。對于新接觸TEM的科研人員而言,理解其基礎原理和操作對于高效利用這一設備至關重要。本文將詳細介紹
    的頭像 發(fā)表于 11-06 14:29 ?525次閱讀
    <b class='flag-5'>透射電子顯微鏡</b>(TEM):基礎知識概覽

    傅里葉光場顯微成像技術—2D顯微鏡實現(xiàn)3D成像

    近年來,光場顯微技術的應用越來越廣泛,針對光場顯微鏡的改進和優(yōu)化也不斷出現(xiàn)。目前市場各大品牌的2D顯微鏡比比皆是,如何在其基礎上實現(xiàn)三維成像一直是
    的頭像 發(fā)表于 10-31 08:05 ?363次閱讀
    傅里葉光場<b class='flag-5'>顯微</b><b class='flag-5'>成像</b>技術—2D<b class='flag-5'>顯微鏡</b>實現(xiàn)3D<b class='flag-5'>成像</b>

    共聚焦激光顯微鏡對比超分辨顯微鏡

    顯微鏡技術的發(fā)展極大地推動了科學研究的進步,尤其是在細胞生物學和納米科學領域。共聚焦激光顯微鏡(CLSM)和超分辨顯微鏡作為兩種重要的顯微成像
    的頭像 發(fā)表于 10-30 09:42 ?503次閱讀

    共聚焦激光顯微鏡工作原理

    細微的結構和動態(tài)過程。 共聚焦激光顯微鏡的基本原理 共聚焦激光顯微鏡的核心在于“共焦”技術。這一技術利用點光源(通常是激光)和特殊的光學系統(tǒng),使得成像過程中只有焦點處的樣本被照亮和
    的頭像 發(fā)表于 10-30 09:27 ?453次閱讀

    什么是散射成像技術?

    的發(fā)展,而且在解決散射成像方面表現(xiàn)出了得天獨厚的優(yōu)勢。 在彈道光提取方面,自適應光學成像技術、光學相干層析技術、共聚焦顯微技術、多光子顯微技術、光聲
    的頭像 發(fā)表于 08-23 06:25 ?251次閱讀
    什么是<b class='flag-5'>散射成像</b>技術?

    照明顯微鏡激光引擎

    Coherent CellX 是一款專為顯微鏡而設計的通用型光引擎(現(xiàn)在配有光纖傳輸系統(tǒng))。 顯微鏡很像一種藝術形式,向生物樣品傳遞適量的能量代表一種脆弱的平衡。能量太少,細節(jié)可能會被隱藏。能量太多
    的頭像 發(fā)表于 06-24 06:30 ?313次閱讀
    <b class='flag-5'>照明顯微鏡</b>激光引擎

    共聚焦顯微鏡成像原理、功能、分辨率與優(yōu)勢解析

    在材料科學和精密工程領域,對微觀結構的精確測量和分析至關重要。共聚焦顯微鏡作為一種高精度的成像技術,為這些領域提供了強大的工具。共聚焦顯微鏡成像
    的頭像 發(fā)表于 06-14 09:28 ?1562次閱讀
    共聚焦<b class='flag-5'>顯微鏡</b>:<b class='flag-5'>成像</b>原理、功能、分辨率與優(yōu)勢解析

    共聚焦、光學顯微鏡與測量顯微鏡的區(qū)分

    共聚焦顯微鏡是一種光學顯微鏡,也可以被稱為測量顯微鏡。在它用于精確測量樣品的尺寸、形狀、表面粗糙度或其他物理特性時,能夠提供非常精確的三維形貌圖像,這使得它成為測量樣品表面特征的強大工
    發(fā)表于 05-14 10:43 ?3次下載

    顯微成像與精密測量:共聚焦、光學顯微鏡與測量顯微鏡的區(qū)分

    共聚焦顯微鏡是一種光學顯微鏡,也可以被稱為測量顯微鏡。能夠進行二維和三維成像,是光學顯微鏡技術中較為先進的一種;因其高精度的三維
    的頭像 發(fā)表于 05-11 11:38 ?894次閱讀
    <b class='flag-5'>顯微</b><b class='flag-5'>成像</b>與精密測量:共聚焦、光學<b class='flag-5'>顯微鏡</b>與測量<b class='flag-5'>顯微鏡</b>的區(qū)分

    用于材料領域的共聚焦顯微鏡可以看到什么?

    用于材料領域的共聚焦顯微鏡可以觀察和分析材料的微觀結構和特征,具體包括以下幾個方面:1.金屬材料的微觀形貌:共聚焦顯微鏡可以觀察金屬材料的表面形貌,如晶粒
    的頭像 發(fā)表于 04-25 09:17 ?594次閱讀
    <b class='flag-5'>用于</b>材料領域的共聚焦<b class='flag-5'>顯微鏡</b>可以看到什么?

    顯微測量|共聚焦顯微鏡大傾角超清納米三維顯微成像

    用于材料科學領域的共聚焦顯微鏡,基于光學共軛共焦原理,其超高的空間分辨率和三維成像能力,提供了全新的視角和解決方案。工作原理共聚焦顯微鏡通過在樣品的焦點處聚焦激光束,在樣品表面進行快速
    發(fā)表于 02-20 09:07 ?1次下載

    顯微測量|共聚焦顯微鏡大傾角超清納米三維顯微成像

    共聚焦顯微鏡在材料學領域應用廣泛,通過超高分辨率的三維顯微成像測量,可清晰觀察材料的表面形貌、表層結構和納米尺度的缺陷,有助于理解材料的微觀特性和材料工程設計。
    的頭像 發(fā)表于 02-18 10:53 ?539次閱讀
    <b class='flag-5'>顯微</b>測量|共聚焦<b class='flag-5'>顯微鏡</b>大傾角超清納米三維<b class='flag-5'>顯微</b><b class='flag-5'>成像</b>

    顯微鏡結構和使用方法 顯微鏡分為哪三個部分

    顯微鏡是一種用于放大觀察微小物體的光學儀器。它通過對物體的光線進行放大和調節(jié),使我們能夠看到肉眼無法觀察到的微小細節(jié)。顯微鏡廣泛應用于生物學、醫(yī)學、工程和材料科學等領域。為了更好地理解
    的頭像 發(fā)表于 01-25 14:19 ?2714次閱讀

    【應用案例】掃描近場光學顯微鏡SNOM

    場)光學顯微鏡理論分辨率的阿貝衍射極限,將光學分辨率提高了幾十甚至上百倍。且縱向分辨率優(yōu)于橫向分辨率,能夠得到清晰的三維圖像,以及局域熒光、偏振、折射率、光吸收率、光譜等信息。 掃描近場光學顯微鏡的特點 與普通光學顯微鏡(OM)
    的頭像 發(fā)表于 01-09 14:19 ?871次閱讀

    一種大視場結構照明顯微鏡設計

    結構照明顯微鏡(SIM)具有成像速度快、侵入性小、分辨率超高、具有光學切片成像能力等優(yōu)點,在生物學研究中得到了廣泛的應用。然而,使用空間光調制器(SLM)進行條紋投影的傳統(tǒng)SIM通常具
    的頭像 發(fā)表于 01-07 14:14 ?591次閱讀
    一種大視場<b class='flag-5'>結構</b><b class='flag-5'>照明顯微鏡</b>設計