0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

英碼科技EA500I基于昇騰Mind SDK實現(xiàn)實時人體關鍵點檢測

英碼嵌入式 ? 2024-04-20 08:25 ? 次閱讀


在教育、體育、安防、交通、醫(yī)療等領域中,實時人體關鍵點檢測應用發(fā)揮著至關重要的作用,比如在體育訓練時,實時人體關鍵點檢測可以精確、實時地捕捉運動員的動作,從而進行動作分析和優(yōu)化;在安防應用場景中,實時人體關鍵點檢測應用可以用來識別異常行為或特定姿態(tài),以達到場景安全防控的目的。

那么,什么是實時人體關鍵點檢測?


簡單來說,實時人體關鍵點檢測是一種計算機視覺技術,它能夠在圖像或視頻中實時地自動識別并標注出人體的關鍵部位,如關節(jié)點、頭部等。


實時人體關鍵點檢測在邊緣計算領域的應用非常重要和廣泛,今天我們來介紹:如何在英碼科技EA500I邊緣計算盒子上使用昇騰Mind SDK來實現(xiàn)實時人體關鍵點檢測。

8b766930-feac-11ee-9118-92fbcf53809c.jpg

案例概述

本應用以英碼科技EA500I邊緣計算盒子為主要硬件平臺,使用昇騰MindX SDK開發(fā)端到端人體關鍵點識別的參考設計,實現(xiàn)對視頻中的人體進行關鍵點識別的功能。

案例說明

本案例參考華為昇騰Mind SDK 實時人體關鍵點檢測,底層原理邏輯請參考:<昇騰社區(qū)應用案例>

前置條件

8bcbbb74-feac-11ee-9118-92fbcf53809c.png

1環(huán)境安裝
●注意:


?以下操作以普通用戶HwHiAiUser安裝CANN包為例說明,推薦使用root用戶進行操作,如果是root用戶,請將安裝準備中所有的${HOME}修改為/usr/local。


?推薦按照本文檔路徑進行操作,如安裝在自定義路徑可能會導致環(huán)境沖突等問題

①配置相關環(huán)境

# 以安裝用戶在任意目錄下執(zhí)行以下命令,打開.bashrc文件。vi ~/.bashrc # 在文件最后一行后面添加如下內(nèi)容。source ${HOME}/Ascend/ascend-toolkit/set_env.shsource /home/work/MindX_SDK/mxVision-5.0.RC3/set_env.sh
export CPU_ARCH=`arch`export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH} #代碼編譯時鏈接samples所依賴的相關庫文件export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH #運行時鏈接庫文件export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN軟件安裝后的文件存儲路徑,根據(jù)安裝目錄自行修改export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #聲明CANN環(huán)境export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #聲明CANN環(huán)境# 執(zhí)行命令保存文件并退出。:wq! # 執(zhí)行命令使其立即生效。source ~/.bashrc# 創(chuàng)建samples相關依賴文件夾mkdir -p ${THIRDPART_PATH}# 下載源碼并安裝gitcd ${HOME}sudo apt-get install gitgit clone https://gitee.com/ascend/samples.git# 拷貝公共文件到samples相關依賴路徑中cp -r ${HOME}/samples/common ${THIRDPART_PATH} # 拷貝media_mini等so文件以及相關頭文件mkdir -p ${INSTALL_DIR}/drivercp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路徑中沒有相關so文件,可跳過該命令cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路徑中沒有相關頭文件,可跳過該命令# 下載案例源碼并安裝gitcd ${HOME}git clone https://gitee.com/ascend/mindxsdk-referenceapps.git

②安裝x264插件

# 下載x264cd ${HOME}git clone https://code.videolan.org/videolan/x264.gitcd x264# 安裝x264./configure --enable-shared --disable-asmmakesudo make installsudo cp /usr/local/lib/libx264.so.164 /lib

8be68c1a-feac-11ee-9118-92fbcf53809c.png

③安裝部署ffmpeg

# 下載ffmpegcd ${HOME}wget http://www.ffmpeg.org/releases/ffmpeg-4.1.3.tar.gz --no-check-certificatetar -zxvf ffmpeg-4.1.3.tar.gzcd ffmpeg-4.1.3# 安裝ffmpeg./configure --enable-shared --enable-pic --enable-static --disable-x86asm --enable-libx264 --enable-gpl --prefix=${THIRDPART_PATH} #此步驟報錯可參考FAQmake -j8make install# 添加環(huán)境變量vi ~/.bashrc # 在文件最后一行后面添加如下內(nèi)容。export PATH=${HOME}/Ascend/thirdpart/aarch64/bin:$PATH# 執(zhí)行命令保存文件并退出。:wq! # 執(zhí)行命令使其立即生效。source ~/.bashrc

8bfdf58a-feac-11ee-9118-92fbcf53809c.png

④安裝live555

# 下載相應版本的live555軟件包,該版本測試可用,部分版本的軟件包會有代碼編譯的報錯cd ${HOME}wget http://www.live555.com/liveMedia/public/live.xxxx.xx.xx.tar.gz(請根據(jù)實際版本下載)tar -zxvf live.xxxx.xx.xx.tar.gzcd live/# 修改config.linuxvi config.linux找到:CPLUSPLUS_FLAGS = $(COMPILE_OPTS) -Wall -DBSD=1替換為:CPLUSPLUS_FLAGS = $(COMPILE_OPTS) -Wall -DBSD=1 -std=c++2a# 執(zhí)行命令保存文件并退出。:wq! # 配置視頻循環(huán)推流,按照以下提示修改文件可以使自主搭建的rtsp循環(huán)推流,如果不作更改,則為有限的視頻流cd ./liveMedia/vi ByteStreamFileSource.cpp# 在liveMedia庫下的ByteStreamFileSource.cpp文件中的95行,找到:void ByteStreamFileSource::doGetNextFrame() {
if (feof(fFid) || ferror(fFid) || (fLimitNumBytesToStream && fNumBytesToStream == 0)){ handleClosure(); return; }# 替換為:void ByteStreamFileSource::doGetNextFrame() {
if (feof(fFid) || ferror(fFid) || (fLimitNumBytesToStream && fNumBytesToStream == 0)) { //handleClosure();** //return;** fseek(fFid, 0, SEEK_SET); }# 執(zhí)行命令保存文件并退出。:wq! # 編譯并安裝cd .../genMakefiles linux #注意后面這個參數(shù)是根據(jù)當前文件夾下config.<后綴>獲取得到的,與服務器架構等有關。make -j8# 編譯完成后就會在當前目錄下生成mediaServer 文件夾,有一個live555MediaServer可執(zhí)行文件# 防止推流丟幀cd ../mediaServervi DynamicRTSPServer.cpp在mediaServer的DynamicRTSPServer.cpp文件中,修改每一處OutPacketBuffer::maxSize的值,更改到800000,該版本有三處需要修改。# 執(zhí)行命令保存文件并退出。:wq!# 修改了代碼后需要重新執(zhí)行編譯cd ..make clean./genMakefiles linux #注意后面這個參數(shù)是根據(jù)當前文件夾下config.<后綴>獲取得到的,與服務器架構等有關。make -j8# 轉換MP4文件,把需要推流的人體MP4視頻文件上傳到相應目錄,執(zhí)行命令轉換成h264文件,相應參數(shù)請自行修改ffmpeg -i test.mp4 -vcodec h264 -bf 0 -g 25 -r 10 -s 1280*720 -an -f h264 test1.264//-bf B幀數(shù)目控制,-g 關鍵幀間隔控制,-s 分辨率控制 -an關閉音頻, -r 指定幀率# 把轉換后的h264文件拷貝到${HOME}/live/mediaServer/路徑下# 啟動推流./live555MediaServer# 啟動完成會輸出推流地址,其中rtsp_Url的格式是 rtsp://host:port/Data,host:port/路徑映射到mediaServer/目錄下,Data為視頻文件的路徑。例:rtsp://10.1.30.111:80/test1.h264# 啟動成功后該終端窗口會一直推流,請另開一個終端窗口進行后續(xù)步驟

8c169702-feac-11ee-9118-92fbcf53809c.png

2模型獲取&轉換

# 進入案例路徑,mindxsdk-referenceapps為前置步驟中下載的案例包cd ${HOME}/mindxsdk-referenceapps/contrib/RTMHumanKeypointsDetection# 在models路徑下下載原始模型,下列鏈接可下載512x512的onnx模型文件cd ./modelswget https://mindx.sdk.obs.cn-north-4.myhuaweicloud.com/mindxsdk-referenceapps%20/contrib/RTMHumanKeypointsDetection/human-pose-estimation512.onnx --no-check-certificate# 進入"${RTMHumanKeypointsDetection代碼包目錄}/models/"目錄,對"insert_op.cfg"文件做以下修改related_input_rank: 0src_image_size_w: 512 # onnx模型輸入的寬,請根據(jù)對應模型進行修改,如使用本案例文檔下載的原始模型,則不需要修改src_image_size_h: 512 # onnx模型輸入的高,請根據(jù)對應模型進行修改,如使用本案例文檔下載的原始模型,則不需要修改crop: false# 使用ATC工具進行模型轉換atc --model=./human-pose-estimation512.onnx --framework=5 --output=openpose_pytorch_512 --soc_version=Ascend310B1 --input_shape="data:1, 3, 512, 512" --input_format=NCHW --insert_op_conf=./insert_op.cfg

3編譯運行案例

# 修改RTMHumanKeypointsDetection/pipeline目錄下的rtmOpenpose.pipeline文件中mxpi_rtspsrc0的內(nèi)容。 "mxpi_rtspsrc0": { "factory": "mxpi_rtspsrc", "props": { "rtspUrl":"rtsp://xxx.xxx.xxx.xxx:xxxx/xxx.264", // 修改為自己所使用的的服務器和文件名,例:rtsp://10.1.30.111:80/test1.h264 "channelId": "0" }, "next": "mxpi_videodecoder0" }, # 注意檢查om模型文件名是否和pipeline/rtmOpenpose.pipeline中的mxpi_tensorinfer0 插件 modelPath 屬性值相同,若不同需改為一致。 "mxpi_tensorinfer0":{ "next":"mxpi_rtmopenposepostprocess0", "factory":"mxpi_tensorinfer", "props":{ "dataSource": "mxpi_imageresize0", "modelPath":"./models/openpose_pytorch_512.om"http://檢查om模型文件名是否正確 } },# 若修改了模型的輸入尺寸,還需要將 mxpi_imageresize0 插件中的 resizeWidth 和 resizeHeight 屬性改成修改后的模型輸入尺寸值;將 mxpi_rtmopenposepostprocess0 插件中的 inputWidth 和 inputHeight 屬性改成修改后的模型輸入尺寸值。 "mxpi_imageresize0":{ "next":"queue3", "factory":"mxpi_imageresize", "props":{ "interpolation":"2", "resizeWidth":"512",//輸入的寬,請根據(jù)對應模型進行修改 "resizeHeight":"512",//輸入的高,請根據(jù)對應模型進行修改 "dataSource":"mxpi_videodecoder0", "resizeType":"Resizer_KeepAspectRatio_Fit" } }, ...... "mxpi_rtmopenposepostprocess0":{ "next":"queue4", "factory":"mxpi_rtmopenposepostprocess", "props":{ "imageSource":"mxpi_videodecoder0", "inputHeight":"512",//輸入的高,請根據(jù)對應模型進行修改 "dataSource":"mxpi_tensorinfer0", "inputWidth":"512"http://輸入的寬,請根據(jù)對應模型進行修改 } },# 將pipeline里面的 mxpi_videoencoder0 插件中的 imageHeight 和 imageWidth 更改為上傳視頻的實際高和寬。 "mxpi_videoencoder0":{ "props": { "inputFormat": "YUV420SP_NV12", "outputFormat": "H264", "fps": "1", "iFrameInterval": "50", "imageHeight": "720",#上傳視頻的實際高 "imageWidth": "1280"#上傳視頻的實際寬 },# 本項目需要使用 mxpi_opencvosd 插件,使用前需要生成所需的模型文件。執(zhí)行MindX SDK開發(fā)套件包安裝目錄下 operators/opencvosd/generate_osd_om.sh 腳本生成所需模型文件。例:bash /home/work/MindX_SDK/mxVision-5.0.RC3/operators/opencvosd/generate_osd_om.sh# 編譯項目cd ${HOME}/mindxsdk-referenceapps/contrib/RTMHumanKeypointsDetectionvi CMakeLists.txt# 在target_link_libraries處添加:cpprest例:target_link_libraries(main glog mxbase cpprest plugintoolkit mxpidatatype streammanager mindxsdk_protobuf)cd ./pluginsbash build.sh# 運行推理bash run.sh# 運行成功后如無報錯會在當前路徑下生成一個out.h264文件# 轉換為MP4文件ffmpeg -i out.h264 -c copy output.mp4

8c3695ac-feac-11ee-9118-92fbcf53809c.png

8c6d9098-feac-11ee-9118-92fbcf53809c.png

4案例展示轉換為MP4文件后,可以看到視頻中的人體關鍵點。

至此,實時人體關鍵點檢測應用部署成功,以下是英碼科技技術工程師在實際操作過程中遇到的相關FAQ,供大家參考~

5相關FAQ
①安裝ffmpeg執(zhí)行命令:./configure時報錯:“Unable to create and execute files in /tmp. Set the TMPDIR environm”?該報錯可能是環(huán)境問題

# 聲明相關環(huán)境

export TMPDIR=~/tmp-ffmpeg

mkdir $TMPDIR

# 之后再執(zhí)行./configure .......

②如果在使用Live555進行拉流時,依舊出現(xiàn)”The input frame datawas too large for our buffer“問題,導致丟幀。?嘗試進行下列優(yōu)化

在“l(fā)ive/liveMedia/StreamParser.cpp”中擴展幀解析buffer大小,即BANK_SIZE,默認值為150k,根據(jù)傳輸?shù)腍264數(shù)據(jù)幀大小,至少設置為300k。否則超出大小,可能會被Live555拋棄。

8ca442aa-feac-11ee-9118-92fbcf53809c.png

在“l(fā)ive/liveMedia/MediaSink.cpp”中增加OutPacketBuffer::maxSize大小,同樣為了容納超大幀數(shù)據(jù),否則可能會導致數(shù)據(jù)丟失,設置為 600000。

8cc9aefa-feac-11ee-9118-92fbcf53809c.png

在“l(fā)ive/liveMedia/MultiFramedRTPsource.cpp”中增加socket發(fā)送緩沖區(qū)大小,即increaseSendBufferTo函數(shù)的參數(shù)值--increaseRecieveBufferTo(env, RTPgs-> socketNUm(), 2000000)”

8ce91f88-feac-11ee-9118-92fbcf53809c.png

結語

8b91d562-feac-11ee-9118-92fbcf53809c.png以上就是英碼科技EA500I邊緣計算盒子基于昇騰Mind SDK實現(xiàn)實時人體關鍵點檢測應用的全部操作內(nèi)容,將持續(xù)推出更多基于昇騰AI芯片的邊緣計算盒子和技術干貨,歡迎大家持續(xù)關注和留言交流~

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 檢測
    +關注

    關注

    5

    文章

    4608

    瀏覽量

    92550
  • AI
    AI
    +關注

    關注

    87

    文章

    34314

    瀏覽量

    275493
  • SDK
    SDK
    +關注

    關注

    3

    文章

    1066

    瀏覽量

    47735
收藏 0人收藏

    評論

    相關推薦
    熱點推薦

    DeepSeek在上的模型部署的常見問題及解決方案

    2024年12月26日,DeepSeek-V3橫空出世,以其卓越性能備受矚目。該模型發(fā)布即支持,用戶可在硬件和MindIE推理引擎上實現(xiàn)
    的頭像 發(fā)表于 03-25 16:53 ?736次閱讀
    DeepSeek在<b class='flag-5'>昇</b><b class='flag-5'>騰</b>上的模型部署的常見問題及解決方案

    創(chuàng)思遠達與合作推動AI PC應用創(chuàng)新

    近日,端側智能領域創(chuàng)新者創(chuàng)思遠達攜手,基于算力平臺正式發(fā)布一系列AIPC應用。雙方深度融合了
    的頭像 發(fā)表于 03-25 10:22 ?500次閱讀

    Deepseek進入業(yè)務深水區(qū),為什么需要大EP?

    行業(yè)智能化的高鐵,由大EP+DeepSeek的雙軌鋪成
    的頭像 發(fā)表于 03-17 15:09 ?1108次閱讀
    Deepseek進入業(yè)務深水區(qū),為什么需要<b class='flag-5'>昇</b><b class='flag-5'>騰</b>大EP?

    (原創(chuàng))310B(8T/20T)算力主板定制方案

    310B(20T)算力主板規(guī)格書 1.功能、性能與接口a)310B 20T算力處理器, 4個64位TAISHAN V200M處理器核,最高主頻1.8GHz,計算加速器如下:1)
    發(fā)表于 03-16 21:43

    潤和軟件將持續(xù)深化“+DeepSeek”技術路線

    近日,“+DeepSeek 智算引擎創(chuàng)新行”江蘇省首站活動在南京成功舉辦,本次活動由南京江北新區(qū)產(chǎn)業(yè)技術研創(chuàng)園指導,江蘇省人工智能學會、江蘇鯤鵬·生態(tài)創(chuàng)新中心主辦。江蘇潤和軟件
    的頭像 發(fā)表于 03-08 09:39 ?620次閱讀

    2024年度華為廣東合作伙伴大會 科技榮獲“萬里獎”

    的數(shù)智化轉型,共贏數(shù)智新機遇。 ? ?作為華為重要能力型合作伙伴,科技受邀出席并榮獲"
    的頭像 發(fā)表于 02-25 15:59 ?397次閱讀
    2024年度華為廣東合作伙伴大會 <b class='flag-5'>英</b><b class='flag-5'>碼</b>科技榮獲“<b class='flag-5'>昇</b><b class='flag-5'>騰</b>萬里獎”

    迅龍軟件出席華為APN伙伴大會,獲APN鉆石伙伴授牌及兩項大獎

    2025年2月15日,華為APN伙伴大會在深圳順利舉辦。本次大會匯聚來自能源、交通、制造、教育等各行各業(yè)的APN合作伙伴,共同探討APN產(chǎn)業(yè)生態(tài)的新機遇與發(fā)展路徑,分享
    的頭像 發(fā)表于 02-17 17:04 ?874次閱讀
    迅龍軟件出席華為<b class='flag-5'>昇</b><b class='flag-5'>騰</b>APN伙伴大會,獲<b class='flag-5'>昇</b><b class='flag-5'>騰</b>APN鉆石伙伴授牌及兩項大獎

    喜訊 科技受邀出席華為APN伙伴大會,正式成為「鉆石部件伙伴」,喜獲多個重磅獎項!

    2025年2月15日,華為APN伙伴大會在深圳順利舉辦。科技以戰(zhàn)略級合作伙伴身份喜獲雙重殊榮——榮登 「
    的頭像 發(fā)表于 02-17 16:32 ?461次閱讀
    喜訊 <b class='flag-5'>英</b><b class='flag-5'>碼</b>科技受邀出席華為<b class='flag-5'>昇</b><b class='flag-5'>騰</b>APN伙伴大會,正式成為「<b class='flag-5'>昇</b><b class='flag-5'>騰</b>鉆石部件伙伴」,喜獲多個重磅獎項!

    變頻器圖紙

    變頻器圖紙
    發(fā)表于 01-07 18:18 ?21次下載

    CHE100變頻器原理圖

    圖紙包括:變頻器電源及通訊電路變頻器TMS320LF2406外圍電路、變頻器電
    發(fā)表于 12-16 11:06 ?9次下載

    《DNK210使用指南 -CanMV版 V1.0》第四十四章 人臉68關鍵點檢測實驗

    第四十四章 人臉68關鍵點檢測實驗 在上一章節(jié)中,介紹了利用maix.KPU模塊實現(xiàn)了人臉屬性分析,本章將繼續(xù)介紹利用maix.KPU模塊實現(xiàn)的人臉68
    發(fā)表于 11-18 14:28

    系列雙處理邊緣計算盒子DA500I,打造高效低延遲的視覺推理解決方案

    時效率較低,容易出現(xiàn)性能瓶頸,導致延遲增大;而GPU雖然在圖像處理上表現(xiàn)優(yōu)秀,但功耗較高且不能靈活應對多樣化任務。 為應對這一挑戰(zhàn),科技推出系列首款雙處理的邊緣計算盒子—DA
    的頭像 發(fā)表于 11-14 14:45 ?648次閱讀
    <b class='flag-5'>昇</b><b class='flag-5'>騰</b>系列雙處理邊緣計算盒子DA<b class='flag-5'>500I</b>,打造高效低延遲的視覺推理解決方案

    思原生,助力智譜打造自主創(chuàng)新大模型體系!

    自從全面啟動原生開發(fā),越來越多的生態(tài)伙伴選擇,大模型生態(tài)從“應用遷移”走向“原生開發(fā)”,充分依托
    的頭像 發(fā)表于 08-20 18:29 ?703次閱讀
    <b class='flag-5'>昇</b><b class='flag-5'>騰</b>與<b class='flag-5'>昇</b>思原生,助力智譜打造自主創(chuàng)新大模型體系!

    APN最佳伙伴—科技AI算力計算產(chǎn)品亮相WAIC 2024

    WAIC2024的成功舉辦,必將推動人工智能技術的發(fā)展實現(xiàn)新的跨越,科技也從中收獲滿滿!未來,科技將繼續(xù)深耕人工智能領域,持續(xù)為行業(yè)
    的頭像 發(fā)表于 07-09 16:50 ?756次閱讀
    <b class='flag-5'>昇</b><b class='flag-5'>騰</b>APN最佳伙伴—<b class='flag-5'>英</b><b class='flag-5'>碼</b>科技AI算力計算產(chǎn)品亮相WAIC 2024

    基于AI Yolov7模型遷移到平臺EA500I邊緣計算盒子的實操指南

    近年來,國產(chǎn)化替代的進程正在加快。在眾多國產(chǎn)平臺中,平臺具有高性能、低功耗、易擴展、軟件棧全面成熟等優(yōu)勢,其產(chǎn)品和技術在國內(nèi)眾多領域實現(xiàn)了廣泛應用;作為
    的頭像 發(fā)表于 06-26 17:51 ?1107次閱讀
    基于<b class='flag-5'>昇</b><b class='flag-5'>騰</b>AI  Yolov7模型遷移到<b class='flag-5'>昇</b><b class='flag-5'>騰</b>平臺<b class='flag-5'>EA500I</b>邊緣計算盒子的實操指南

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術信息
    • 參加活動獲取豐厚的禮品