0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

英碼科技EA500I基于昇騰Mind SDK實(shí)現(xiàn)實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)

英碼嵌入式 ? 2024-04-20 08:25 ? 次閱讀


在教育、體育、安防、交通、醫(yī)療等領(lǐng)域中,實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)應(yīng)用發(fā)揮著至關(guān)重要的作用,比如在體育訓(xùn)練時(shí),實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)可以精確、實(shí)時(shí)地捕捉運(yùn)動(dòng)員的動(dòng)作,從而進(jìn)行動(dòng)作分析和優(yōu)化;在安防應(yīng)用場(chǎng)景中,實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)應(yīng)用可以用來(lái)識(shí)別異常行為或特定姿態(tài),以達(dá)到場(chǎng)景安全防控的目的。

那么,什么是實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)?


簡(jiǎn)單來(lái)說(shuō),實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)是一種計(jì)算機(jī)視覺(jué)技術(shù),它能夠在圖像或視頻中實(shí)時(shí)地自動(dòng)識(shí)別并標(biāo)注出人體的關(guān)鍵部位,如關(guān)節(jié)點(diǎn)、頭部等。


實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)在邊緣計(jì)算領(lǐng)域的應(yīng)用非常重要和廣泛,今天我們來(lái)介紹:如何在英碼科技EA500I邊緣計(jì)算盒子上使用昇騰Mind SDK來(lái)實(shí)現(xiàn)實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)。

8b766930-feac-11ee-9118-92fbcf53809c.jpg

案例概述

本應(yīng)用以英碼科技EA500I邊緣計(jì)算盒子為主要硬件平臺(tái),使用昇騰MindX SDK開(kāi)發(fā)端到端人體關(guān)鍵點(diǎn)識(shí)別的參考設(shè)計(jì),實(shí)現(xiàn)對(duì)視頻中的人體進(jìn)行關(guān)鍵點(diǎn)識(shí)別的功能。

案例說(shuō)明

本案例參考華為昇騰Mind SDK 實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè),底層原理邏輯請(qǐng)參考:<昇騰社區(qū)應(yīng)用案例>

前置條件

8bcbbb74-feac-11ee-9118-92fbcf53809c.png

1環(huán)境安裝
●注意:


?以下操作以普通用戶HwHiAiUser安裝CANN包為例說(shuō)明,推薦使用root用戶進(jìn)行操作,如果是root用戶,請(qǐng)將安裝準(zhǔn)備中所有的${HOME}修改為/usr/local。


?推薦按照本文檔路徑進(jìn)行操作,如安裝在自定義路徑可能會(huì)導(dǎo)致環(huán)境沖突等問(wèn)題

①配置相關(guān)環(huán)境

# 以安裝用戶在任意目錄下執(zhí)行以下命令,打開(kāi).bashrc文件。vi ~/.bashrc # 在文件最后一行后面添加如下內(nèi)容。source ${HOME}/Ascend/ascend-toolkit/set_env.shsource /home/work/MindX_SDK/mxVision-5.0.RC3/set_env.sh
export CPU_ARCH=`arch`export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH} #代碼編譯時(shí)鏈接samples所依賴的相關(guān)庫(kù)文件export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH #運(yùn)行時(shí)鏈接庫(kù)文件export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN軟件安裝后的文件存儲(chǔ)路徑,根據(jù)安裝目錄自行修改export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #聲明CANN環(huán)境export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #聲明CANN環(huán)境# 執(zhí)行命令保存文件并退出。:wq! # 執(zhí)行命令使其立即生效。source ~/.bashrc# 創(chuàng)建samples相關(guān)依賴文件夾mkdir -p ${THIRDPART_PATH}# 下載源碼并安裝gitcd ${HOME}sudo apt-get install gitgit clone https://gitee.com/ascend/samples.git# 拷貝公共文件到samples相關(guān)依賴路徑中cp -r ${HOME}/samples/common ${THIRDPART_PATH} # 拷貝media_mini等so文件以及相關(guān)頭文件mkdir -p ${INSTALL_DIR}/drivercp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路徑中沒(méi)有相關(guān)so文件,可跳過(guò)該命令cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路徑中沒(méi)有相關(guān)頭文件,可跳過(guò)該命令# 下載案例源碼并安裝gitcd ${HOME}git clone https://gitee.com/ascend/mindxsdk-referenceapps.git

②安裝x264插件

# 下載x264cd ${HOME}git clone https://code.videolan.org/videolan/x264.gitcd x264# 安裝x264./configure --enable-shared --disable-asmmakesudo make installsudo cp /usr/local/lib/libx264.so.164 /lib

8be68c1a-feac-11ee-9118-92fbcf53809c.png

③安裝部署ffmpeg

# 下載ffmpegcd ${HOME}wget http://www.ffmpeg.org/releases/ffmpeg-4.1.3.tar.gz --no-check-certificatetar -zxvf ffmpeg-4.1.3.tar.gzcd ffmpeg-4.1.3# 安裝ffmpeg./configure --enable-shared --enable-pic --enable-static --disable-x86asm --enable-libx264 --enable-gpl --prefix=${THIRDPART_PATH} #此步驟報(bào)錯(cuò)可參考FAQmake -j8make install# 添加環(huán)境變量vi ~/.bashrc # 在文件最后一行后面添加如下內(nèi)容。export PATH=${HOME}/Ascend/thirdpart/aarch64/bin:$PATH# 執(zhí)行命令保存文件并退出。:wq! # 執(zhí)行命令使其立即生效。source ~/.bashrc

8bfdf58a-feac-11ee-9118-92fbcf53809c.png

④安裝live555

# 下載相應(yīng)版本的live555軟件包,該版本測(cè)試可用,部分版本的軟件包會(huì)有代碼編譯的報(bào)錯(cuò)cd ${HOME}wget http://www.live555.com/liveMedia/public/live.xxxx.xx.xx.tar.gz(請(qǐng)根據(jù)實(shí)際版本下載)tar -zxvf live.xxxx.xx.xx.tar.gzcd live/# 修改config.linuxvi config.linux找到:CPLUSPLUS_FLAGS = $(COMPILE_OPTS) -Wall -DBSD=1替換為:CPLUSPLUS_FLAGS = $(COMPILE_OPTS) -Wall -DBSD=1 -std=c++2a# 執(zhí)行命令保存文件并退出。:wq! # 配置視頻循環(huán)推流,按照以下提示修改文件可以使自主搭建的rtsp循環(huán)推流,如果不作更改,則為有限的視頻流cd ./liveMedia/vi ByteStreamFileSource.cpp# 在liveMedia庫(kù)下的ByteStreamFileSource.cpp文件中的95行,找到:void ByteStreamFileSource::doGetNextFrame() {
if (feof(fFid) || ferror(fFid) || (fLimitNumBytesToStream && fNumBytesToStream == 0)){ handleClosure(); return; }# 替換為:void ByteStreamFileSource::doGetNextFrame() {
if (feof(fFid) || ferror(fFid) || (fLimitNumBytesToStream && fNumBytesToStream == 0)) { //handleClosure();** //return;** fseek(fFid, 0, SEEK_SET); }# 執(zhí)行命令保存文件并退出。:wq! # 編譯并安裝cd .../genMakefiles linux #注意后面這個(gè)參數(shù)是根據(jù)當(dāng)前文件夾下config.<后綴>獲取得到的,與服務(wù)器架構(gòu)等有關(guān)。make -j8# 編譯完成后就會(huì)在當(dāng)前目錄下生成mediaServer 文件夾,有一個(gè)live555MediaServer可執(zhí)行文件# 防止推流丟幀cd ../mediaServervi DynamicRTSPServer.cpp在mediaServer的DynamicRTSPServer.cpp文件中,修改每一處OutPacketBuffer::maxSize的值,更改到800000,該版本有三處需要修改。# 執(zhí)行命令保存文件并退出。:wq!# 修改了代碼后需要重新執(zhí)行編譯cd ..make clean./genMakefiles linux #注意后面這個(gè)參數(shù)是根據(jù)當(dāng)前文件夾下config.<后綴>獲取得到的,與服務(wù)器架構(gòu)等有關(guān)。make -j8# 轉(zhuǎn)換MP4文件,把需要推流的人體MP4視頻文件上傳到相應(yīng)目錄,執(zhí)行命令轉(zhuǎn)換成h264文件,相應(yīng)參數(shù)請(qǐng)自行修改ffmpeg -i test.mp4 -vcodec h264 -bf 0 -g 25 -r 10 -s 1280*720 -an -f h264 test1.264//-bf B幀數(shù)目控制,-g 關(guān)鍵幀間隔控制,-s 分辨率控制 -an關(guān)閉音頻, -r 指定幀率# 把轉(zhuǎn)換后的h264文件拷貝到${HOME}/live/mediaServer/路徑下# 啟動(dòng)推流./live555MediaServer# 啟動(dòng)完成會(huì)輸出推流地址,其中rtsp_Url的格式是 rtsp://host:port/Data,host:port/路徑映射到mediaServer/目錄下,Data為視頻文件的路徑。例:rtsp://10.1.30.111:80/test1.h264# 啟動(dòng)成功后該終端窗口會(huì)一直推流,請(qǐng)另開(kāi)一個(gè)終端窗口進(jìn)行后續(xù)步驟

8c169702-feac-11ee-9118-92fbcf53809c.png

2模型獲取&轉(zhuǎn)換

# 進(jìn)入案例路徑,mindxsdk-referenceapps為前置步驟中下載的案例包c(diǎn)d ${HOME}/mindxsdk-referenceapps/contrib/RTMHumanKeypointsDetection# 在models路徑下下載原始模型,下列鏈接可下載512x512的onnx模型文件cd ./modelswget https://mindx.sdk.obs.cn-north-4.myhuaweicloud.com/mindxsdk-referenceapps%20/contrib/RTMHumanKeypointsDetection/human-pose-estimation512.onnx --no-check-certificate# 進(jìn)入"${RTMHumanKeypointsDetection代碼包目錄}/models/"目錄,對(duì)"insert_op.cfg"文件做以下修改related_input_rank: 0src_image_size_w: 512 # onnx模型輸入的寬,請(qǐng)根據(jù)對(duì)應(yīng)模型進(jìn)行修改,如使用本案例文檔下載的原始模型,則不需要修改src_image_size_h: 512 # onnx模型輸入的高,請(qǐng)根據(jù)對(duì)應(yīng)模型進(jìn)行修改,如使用本案例文檔下載的原始模型,則不需要修改crop: false# 使用ATC工具進(jìn)行模型轉(zhuǎn)換atc --model=./human-pose-estimation512.onnx --framework=5 --output=openpose_pytorch_512 --soc_version=Ascend310B1 --input_shape="data:1, 3, 512, 512" --input_format=NCHW --insert_op_conf=./insert_op.cfg

3編譯運(yùn)行案例

# 修改RTMHumanKeypointsDetection/pipeline目錄下的rtmOpenpose.pipeline文件中mxpi_rtspsrc0的內(nèi)容。 "mxpi_rtspsrc0": { "factory": "mxpi_rtspsrc", "props": { "rtspUrl":"rtsp://xxx.xxx.xxx.xxx:xxxx/xxx.264", // 修改為自己所使用的的服務(wù)器和文件名,例:rtsp://10.1.30.111:80/test1.h264 "channelId": "0" }, "next": "mxpi_videodecoder0" }, # 注意檢查om模型文件名是否和pipeline/rtmOpenpose.pipeline中的mxpi_tensorinfer0 插件 modelPath 屬性值相同,若不同需改為一致。 "mxpi_tensorinfer0":{ "next":"mxpi_rtmopenposepostprocess0", "factory":"mxpi_tensorinfer", "props":{ "dataSource": "mxpi_imageresize0", "modelPath":"./models/openpose_pytorch_512.om"http://檢查om模型文件名是否正確 } },# 若修改了模型的輸入尺寸,還需要將 mxpi_imageresize0 插件中的 resizeWidth 和 resizeHeight 屬性改成修改后的模型輸入尺寸值;將 mxpi_rtmopenposepostprocess0 插件中的 inputWidth 和 inputHeight 屬性改成修改后的模型輸入尺寸值。 "mxpi_imageresize0":{ "next":"queue3", "factory":"mxpi_imageresize", "props":{ "interpolation":"2", "resizeWidth":"512",//輸入的寬,請(qǐng)根據(jù)對(duì)應(yīng)模型進(jìn)行修改 "resizeHeight":"512",//輸入的高,請(qǐng)根據(jù)對(duì)應(yīng)模型進(jìn)行修改 "dataSource":"mxpi_videodecoder0", "resizeType":"Resizer_KeepAspectRatio_Fit" } }, ...... "mxpi_rtmopenposepostprocess0":{ "next":"queue4", "factory":"mxpi_rtmopenposepostprocess", "props":{ "imageSource":"mxpi_videodecoder0", "inputHeight":"512",//輸入的高,請(qǐng)根據(jù)對(duì)應(yīng)模型進(jìn)行修改 "dataSource":"mxpi_tensorinfer0", "inputWidth":"512"http://輸入的寬,請(qǐng)根據(jù)對(duì)應(yīng)模型進(jìn)行修改 } },# 將pipeline里面的 mxpi_videoencoder0 插件中的 imageHeight 和 imageWidth 更改為上傳視頻的實(shí)際高和寬。 "mxpi_videoencoder0":{ "props": { "inputFormat": "YUV420SP_NV12", "outputFormat": "H264", "fps": "1", "iFrameInterval": "50", "imageHeight": "720",#上傳視頻的實(shí)際高 "imageWidth": "1280"#上傳視頻的實(shí)際寬 },# 本項(xiàng)目需要使用 mxpi_opencvosd 插件,使用前需要生成所需的模型文件。執(zhí)行MindX SDK開(kāi)發(fā)套件包安裝目錄下 operators/opencvosd/generate_osd_om.sh 腳本生成所需模型文件。例:bash /home/work/MindX_SDK/mxVision-5.0.RC3/operators/opencvosd/generate_osd_om.sh# 編譯項(xiàng)目cd ${HOME}/mindxsdk-referenceapps/contrib/RTMHumanKeypointsDetectionvi CMakeLists.txt# 在target_link_libraries處添加:cpprest例:target_link_libraries(main glog mxbase cpprest plugintoolkit mxpidatatype streammanager mindxsdk_protobuf)cd ./pluginsbash build.sh# 運(yùn)行推理bash run.sh# 運(yùn)行成功后如無(wú)報(bào)錯(cuò)會(huì)在當(dāng)前路徑下生成一個(gè)out.h264文件# 轉(zhuǎn)換為MP4文件ffmpeg -i out.h264 -c copy output.mp4

8c3695ac-feac-11ee-9118-92fbcf53809c.png

8c6d9098-feac-11ee-9118-92fbcf53809c.png

4案例展示轉(zhuǎn)換為MP4文件后,可以看到視頻中的人體關(guān)鍵點(diǎn)。

至此,實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)應(yīng)用部署成功,以下是英碼科技技術(shù)工程師在實(shí)際操作過(guò)程中遇到的相關(guān)FAQ,供大家參考~

5相關(guān)FAQ
①安裝ffmpeg執(zhí)行命令:./configure時(shí)報(bào)錯(cuò):“Unable to create and execute files in /tmp. Set the TMPDIR environm”?該報(bào)錯(cuò)可能是環(huán)境問(wèn)題

# 聲明相關(guān)環(huán)境

export TMPDIR=~/tmp-ffmpeg

mkdir $TMPDIR

# 之后再執(zhí)行./configure .......

②如果在使用Live555進(jìn)行拉流時(shí),依舊出現(xiàn)”The input frame datawas too large for our buffer“問(wèn)題,導(dǎo)致丟幀。?嘗試進(jìn)行下列優(yōu)化

在“l(fā)ive/liveMedia/StreamParser.cpp”中擴(kuò)展幀解析buffer大小,即BANK_SIZE,默認(rèn)值為150k,根據(jù)傳輸?shù)腍264數(shù)據(jù)幀大小,至少設(shè)置為300k。否則超出大小,可能會(huì)被Live555拋棄。

8ca442aa-feac-11ee-9118-92fbcf53809c.png

在“l(fā)ive/liveMedia/MediaSink.cpp”中增加OutPacketBuffer::maxSize大小,同樣為了容納超大幀數(shù)據(jù),否則可能會(huì)導(dǎo)致數(shù)據(jù)丟失,設(shè)置為 600000。

8cc9aefa-feac-11ee-9118-92fbcf53809c.png

在“l(fā)ive/liveMedia/MultiFramedRTPsource.cpp”中增加socket發(fā)送緩沖區(qū)大小,即increaseSendBufferTo函數(shù)的參數(shù)值--increaseRecieveBufferTo(env, RTPgs-> socketNUm(), 2000000)”

8ce91f88-feac-11ee-9118-92fbcf53809c.png

結(jié)語(yǔ)

8b91d562-feac-11ee-9118-92fbcf53809c.png以上就是英碼科技EA500I邊緣計(jì)算盒子基于昇騰Mind SDK實(shí)現(xiàn)實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)應(yīng)用的全部操作內(nèi)容,將持續(xù)推出更多基于昇騰AI芯片的邊緣計(jì)算盒子和技術(shù)干貨,歡迎大家持續(xù)關(guān)注和留言交流~

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 檢測(cè)
    +關(guān)注

    關(guān)注

    5

    文章

    4488

    瀏覽量

    91469
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    30887

    瀏覽量

    269060
  • SDK
    SDK
    +關(guān)注

    關(guān)注

    3

    文章

    1036

    瀏覽量

    45934
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    CHE100變頻器原理圖

    圖紙包括:變頻器電源及通訊電路變頻器TMS320LF2406外圍電路、變頻器電
    發(fā)表于 12-16 11:06 ?2次下載

    系列雙處理邊緣計(jì)算盒子DA500I,打造高效低延遲的視覺(jué)推理解決方案

    時(shí)效率較低,容易出現(xiàn)性能瓶頸,導(dǎo)致延遲增大;而GPU雖然在圖像處理上表現(xiàn)優(yōu)秀,但功耗較高且不能靈活應(yīng)對(duì)多樣化任務(wù)。 為應(yīng)對(duì)這一挑戰(zhàn),科技推出系列首款雙處理的邊緣計(jì)算盒子—DA
    的頭像 發(fā)表于 11-14 14:45 ?232次閱讀
    <b class='flag-5'>昇</b><b class='flag-5'>騰</b>系列雙處理邊緣計(jì)算盒子DA<b class='flag-5'>500I</b>,打造高效低延遲的視覺(jué)推理解決方案

    思原生,助力智譜打造自主創(chuàng)新大模型體系!

    自從全面啟動(dòng)原生開(kāi)發(fā),越來(lái)越多的生態(tài)伙伴選擇,大模型生態(tài)從“應(yīng)用遷移”走向“原生開(kāi)發(fā)”,充分依托
    的頭像 發(fā)表于 08-20 18:29 ?446次閱讀
    <b class='flag-5'>昇</b><b class='flag-5'>騰</b>與<b class='flag-5'>昇</b>思原生,助力智譜打造自主創(chuàng)新大模型體系!

    APN最佳伙伴—科技AI算力計(jì)算產(chǎn)品亮相WAIC 2024

    WAIC2024的成功舉辦,必將推動(dòng)人工智能技術(shù)的發(fā)展實(shí)現(xiàn)新的跨越,科技也從中收獲滿滿!未來(lái),科技將繼續(xù)深耕人工智能領(lǐng)域,持續(xù)為行業(yè)
    的頭像 發(fā)表于 07-09 16:50 ?488次閱讀
    <b class='flag-5'>昇</b><b class='flag-5'>騰</b>APN最佳伙伴—<b class='flag-5'>英</b><b class='flag-5'>碼</b>科技AI算力計(jì)算產(chǎn)品亮相WAIC 2024

    基于AI Yolov7模型遷移到平臺(tái)EA500I邊緣計(jì)算盒子的實(shí)操指南

    近年來(lái),國(guó)產(chǎn)化替代的進(jìn)程正在加快。在眾多國(guó)產(chǎn)平臺(tái)中,平臺(tái)具有高性能、低功耗、易擴(kuò)展、軟件棧全面成熟等優(yōu)勢(shì),其產(chǎn)品和技術(shù)在國(guó)內(nèi)眾多領(lǐng)域實(shí)現(xiàn)了廣泛應(yīng)用;作為
    的頭像 發(fā)表于 06-26 17:51 ?636次閱讀
    基于<b class='flag-5'>昇</b><b class='flag-5'>騰</b>AI  Yolov7模型遷移到<b class='flag-5'>昇</b><b class='flag-5'>騰</b>平臺(tái)<b class='flag-5'>EA500I</b>邊緣計(jì)算盒子的實(shí)操指南

    科技受邀參加鯤鵬南北雙峰會(huì), 共同打造數(shù)智化新質(zhì)生產(chǎn)力!

    基于平臺(tái)推出的一系列算力產(chǎn)品,以吸睛的直觀方式演示行業(yè)創(chuàng)新解決方案,以及分享科技如何攜手
    的頭像 發(fā)表于 05-17 16:23 ?1266次閱讀

    華為發(fā)布會(huì)大模型翻車?社區(qū)回應(yīng)!

    針對(duì)網(wǎng)傳華為發(fā)布會(huì)大模型生成圖片疑人工操控的消息,社區(qū)回應(yīng):5月10日,在鯤鵬騰開(kāi)發(fā)者大會(huì)的一場(chǎng)技術(shù)討論上,演示了mxRAG SDK功能。
    的頭像 發(fā)表于 05-16 14:14 ?622次閱讀
    華為發(fā)布會(huì)大模型翻車?<b class='flag-5'>昇</b><b class='flag-5'>騰</b>社區(qū)回應(yīng)!

    一步步帶你快速上手嵌入式EA200I-DK開(kāi)發(fā)板:接口功能測(cè)試&amp;典型應(yīng)用演示(免燒錄)

    近期,嵌入式聯(lián)合重磅推出了基于310系列AI推理芯片的AI智能計(jì)算開(kāi)發(fā)套件
    的頭像 發(fā)表于 05-06 13:56 ?1212次閱讀
    一步步帶你快速上手<b class='flag-5'>英</b><b class='flag-5'>碼</b>嵌入式<b class='flag-5'>EA200I</b>-DK開(kāi)發(fā)板:接口功能測(cè)試&amp;典型應(yīng)用演示(免燒錄)

    基于AI | 科技EA500I使用AscendCL實(shí)現(xiàn)垃圾分類和視頻物體分類應(yīng)用

    推出了系列化行業(yè)SDK和參考設(shè)計(jì),通過(guò)把千行百業(yè)細(xì)分場(chǎng)景的開(kāi)發(fā)經(jīng)驗(yàn)和行業(yè)知識(shí)沉淀下來(lái)、水平復(fù)制,從而大幅度降低門檻、簡(jiǎn)化開(kāi)發(fā)、提升效率。而科技是
    的頭像 發(fā)表于 05-01 08:26 ?670次閱讀
    基于<b class='flag-5'>昇</b><b class='flag-5'>騰</b>AI | <b class='flag-5'>英</b><b class='flag-5'>碼</b>科技<b class='flag-5'>EA500I</b>使用AscendCL<b class='flag-5'>實(shí)現(xiàn)</b>垃圾分類和視頻物體分類應(yīng)用

    基于AI | 科技EA500I使用AscendCL實(shí)現(xiàn)垃圾分類和視頻物體分類應(yīng)用

    。 ? 基于此,推出了系列化行業(yè)SDK和參考設(shè)計(jì),通過(guò)把千行百業(yè)細(xì)分場(chǎng)景的開(kāi)發(fā)經(jīng)驗(yàn)和行業(yè)知識(shí)沉淀下來(lái)、水平復(fù)制,從而大幅度降低門檻、簡(jiǎn)化開(kāi)發(fā)、提升效率。而
    的頭像 發(fā)表于 04-26 08:38 ?408次閱讀
    基于<b class='flag-5'>昇</b><b class='flag-5'>騰</b>AI | <b class='flag-5'>英</b><b class='flag-5'>碼</b>科技<b class='flag-5'>EA500I</b>使用AscendCL<b class='flag-5'>實(shí)現(xiàn)</b>垃圾分類和視頻物體分類應(yīng)用

    嵌入式推出系列AI智能計(jì)算模組和開(kāi)發(fā)套件:多規(guī)格算力,支持國(guó)產(chǎn)化定制!

    了基于310系列AI推理芯片的AI智能計(jì)算模組EA200I和開(kāi)發(fā)套件EA200I-DK,具有高算力、接口豐富、工業(yè)級(jí)寬溫設(shè)計(jì)、國(guó)產(chǎn)化、支持產(chǎn)品定制、穩(wěn)定可控等優(yōu)勢(shì),滿足實(shí)驗(yàn)室、學(xué)生
    的頭像 發(fā)表于 04-22 10:33 ?694次閱讀
    <b class='flag-5'>英</b><b class='flag-5'>碼</b>嵌入式推出<b class='flag-5'>昇</b><b class='flag-5'>騰</b>系列AI智能計(jì)算模組和開(kāi)發(fā)套件:多規(guī)格算力,支持國(guó)產(chǎn)化定制!

    科技EA500I基于Mind SDK實(shí)現(xiàn)實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)

    在教育、體育、安防、交通、醫(yī)療等領(lǐng)域中,實(shí)時(shí)人體關(guān)鍵點(diǎn)檢測(cè)應(yīng)用發(fā)揮著至關(guān)重要的作用,比如在體育訓(xùn)練時(shí),實(shí)時(shí)人體關(guān)鍵
    的頭像 發(fā)表于 04-21 17:44 ?997次閱讀
    <b class='flag-5'>英</b><b class='flag-5'>碼</b>科技<b class='flag-5'>EA500I</b>基于<b class='flag-5'>昇</b><b class='flag-5'>騰</b><b class='flag-5'>Mind</b> <b class='flag-5'>SDK</b><b class='flag-5'>實(shí)現(xiàn)實(shí)時(shí)人體</b><b class='flag-5'>關(guān)鍵</b><b class='flag-5'>點(diǎn)檢測(cè)</b>

    官宣!科技榮獲APN分銷金牌認(rèn)證,攜手共建算力底座

    4月15日,華為技術(shù)有限公司正式為廣州信息科技有限公司頒發(fā)“APN分銷金牌認(rèn)證證書(shū)”,授牌儀式在
    的頭像 發(fā)表于 04-16 10:37 ?504次閱讀
    官宣!<b class='flag-5'>英</b><b class='flag-5'>碼</b>科技榮獲<b class='flag-5'>昇</b><b class='flag-5'>騰</b>APN分銷金牌認(rèn)證,攜手共建算力底座

    系列產(chǎn)品應(yīng)用】科技EA500I邊緣計(jì)算盒子接口使用示例和目標(biāo)檢測(cè)算法演示(附視頻)

    EA500I科技聯(lián)合華為精心打造的AI邊緣計(jì)算盒子,其搭載
    的頭像 發(fā)表于 03-29 08:39 ?353次閱讀

    【技術(shù)干貨】教你如何基于華為CANN架構(gòu)快速實(shí)現(xiàn)模型推理應(yīng)用

    正因?yàn)橘Y源極其豐富,浩如星辰,想要快速尋找,到摸索清楚其中的原理,并最終結(jié)合自己手上的項(xiàng)目實(shí)現(xiàn)應(yīng)用部署,人力成本、時(shí)間成本將增加不少,不利于快速推進(jìn)項(xiàng)目。 ? 現(xiàn)在~好消息來(lái)了! 經(jīng)過(guò)科技工程師們的認(rèn)真梳理,本篇文章,我們以
    的頭像 發(fā)表于 03-08 08:36 ?1808次閱讀
    【技術(shù)干貨】教你如何基于華為<b class='flag-5'>昇</b><b class='flag-5'>騰</b>CANN架構(gòu)快速<b class='flag-5'>實(shí)現(xiàn)</b>模型推理應(yīng)用