0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

什么是SLAM?基于3D高斯輻射場的SLAM優(yōu)勢分析

3D視覺工坊 ? 來源:3D視覺工坊 ? 2024-04-01 12:44 ? 次閱讀

什么是SLAM?

SLAM,即同時定位與地圖構(gòu)建技術(shù),SLAM可以讓機器人、無人機和其他自動化系統(tǒng)能夠在未知環(huán)境中同時進行自我定位和環(huán)境映射。

為什么是NeRF-Based SLAM?

傳統(tǒng)CG將輸入圖像重新投影再融合到新的視圖攝像機中,利用幾何結(jié)構(gòu)來進行重投影。在很多情況下,傳統(tǒng)CG方法重建地圖都能有相當好的效果,但是對于地圖上的未知區(qū)域,進行三維重建恢復就有些困難了。

深度學習很早就在應(yīng)用在重建方面。Volumetric 表達由Soft3D提出,隨后與Volumetric ray-marching 相結(jié)合的深度學習技術(shù)出現(xiàn),這是一種基于連續(xù)可微密度場的Geometry(幾何)表示方法。

神經(jīng)輻射場引入了Importance Sampling(重要性采樣)和Positional Encoding(位置編碼),使得三維重建的質(zhì)量得到顯著提升;同時NeRF神經(jīng)渲染算法大大減少了傳統(tǒng)三維重建中生成的偽影,在大多數(shù)情況下效果都比傳統(tǒng)算法好。目前重建圖像質(zhì)量最好的是Mip-NeRF360。

此外,將SLAM技術(shù)融入到深度學習中,更容易使得所有算法能夠統(tǒng)一到一個框架中,方便不同算法之間的數(shù)據(jù)傳輸和通信,方便了上下游兄弟部門的協(xié)同合作。比如建好的地圖可以用于語義標注,從而接到BEV感知中訓練,又或者可以生成 Occupancy 網(wǎng)格,交給規(guī)控部門去做路徑的規(guī)劃和智能體的控制。

為什么是Gaussian-Based SLAM?

基于NeRF的SLAM算法采用全局地圖和圖像重建損失函數(shù),通過可微分渲染捕獲稠密的光度信息,具有高保真度。但是用Implicit Neural Representation(隱式神經(jīng)表達)對場景建模導致了許多問題:

query過程(可以理解為射線渲染)需要大量的采樣,渲染方法成本很高

用了大型多層MLP,運算量大,占用內(nèi)存高

不容易編輯

不能顯式地對空間幾何建模

導致“遺忘”問題

SLAM技術(shù)通常部署在機器人身上,性能尤為關(guān)鍵。后續(xù)出現(xiàn)了一系列解決NeRF重建效果和性能的論文,基于3D高斯輻射場的SLAM有以下好處:

快速渲染和豐富的優(yōu)化:Gaussian Splatting可以以高達400 FPS的速度渲染,使其比隱式表達更快地可視化和優(yōu)化。

有明確空間范圍的建圖:現(xiàn)有地圖的空間邊界可以通過在之前觀察到的部分場景中添加高斯函數(shù)來控制。給定一個新的圖像幀,我們可以通過渲染剪影識別場景的哪些部分是新內(nèi)容(在地圖的空間邊界之外)。這對于Tracking任務(wù)很重要,因為我們只想將已經(jīng)建好圖的部分與新圖像幀進行比較。隱式表達就不行了,因為在對未知區(qū)域建圖優(yōu)化的時候,全局的優(yōu)化會影響到神經(jīng)網(wǎng)絡(luò)。

顯式地圖:我們可以通過添加更多的Gaussian函數(shù)來任意地增加地圖容量。而且這種顯式的表達讓我們可以編輯場景中的某些部分,同時仍然允許真實的渲染。隱式方法不能輕易地增加其容量或編輯其所表示的場景。

審核編輯:黃飛

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器人
    +關(guān)注

    關(guān)注

    213

    文章

    29560

    瀏覽量

    211909
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4702

    瀏覽量

    94932
  • SLAM
    +關(guān)注

    關(guān)注

    24

    文章

    436

    瀏覽量

    32373
  • MLP
    MLP
    +關(guān)注

    關(guān)注

    0

    文章

    57

    瀏覽量

    4515

原文標題:3DGS為什么會成為三維重建的下一個風口?

文章出處:【微信號:3D視覺工坊,微信公眾號:3D視覺工坊】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    一種適用于動態(tài)環(huán)境的3DGS-SLAM系統(tǒng)

    當前基于神經(jīng)輻射(NeRF)或3D高斯潑濺(3DGS)的SLAM方法在重建靜態(tài)
    的頭像 發(fā)表于 06-13 10:10 ?131次閱讀
    一種適用于動態(tài)環(huán)境的<b class='flag-5'>3DGS-SLAM</b>系統(tǒng)

    三維高斯潑濺大規(guī)模視覺SLAM系統(tǒng)解析

    近期興起的神經(jīng)輻射(NeRF)與三維高斯潑濺(3DGS)技術(shù)在視覺SLAM中展現(xiàn)出令人鼓舞的突破性成果。然而,當前主流方法多依賴RGBD傳
    的頭像 發(fā)表于 05-27 14:13 ?177次閱讀
    三維<b class='flag-5'>高斯</b>潑濺大規(guī)模視覺<b class='flag-5'>SLAM</b>系統(tǒng)解析

    基于高斯的稠密視覺SLAM研究

    基于高斯的場景表示在新視角下會出現(xiàn)幾何失真,這大大降低了基于高斯的跟蹤方法的準確性。這些幾何不一致主要源于高斯基元的深度建模以及在深度融合過程中表面之間的相互干擾。為了解決這些問題,我們提出了一種
    的頭像 發(fā)表于 05-15 10:36 ?232次閱讀
    基于<b class='flag-5'>高斯</b>的稠密視覺<b class='flag-5'>SLAM</b>研究

    一種基于點、線和消失點特征的單目SLAM系統(tǒng)設(shè)計

    本文提出了一種穩(wěn)健的單目視覺SLAM系統(tǒng),該系統(tǒng)同時利用點、線和消失點特征來進行精確的相機位姿估計和地圖構(gòu)建,有效解決了傳統(tǒng)基于點特征的SLAM的局限性。
    的頭像 發(fā)表于 03-21 17:07 ?401次閱讀
    一種基于點、線和消失點特征的單目<b class='flag-5'>SLAM</b>系統(tǒng)設(shè)計

    Techwiz LCD 3D應(yīng)用:衍射效率分析

    Techwiz LCD 3D現(xiàn)在可以分析的衍射效率。 不僅可以分析具有各種折射率或重復圖案的光柵結(jié)構(gòu)的衍射特性,還可以分析由液晶行為引起
    發(fā)表于 03-12 09:40

    3D高斯潑濺——實時輻射渲染利器 #高斯潑濺 #可視化 #渲染

    3D
    阿梨是蘋果
    發(fā)布于 :2024年12月30日 14:42:17

    一種基于MASt3R的實時稠密SLAM系統(tǒng)

    本文提出了一種即插即用的單目SLAM系統(tǒng),能夠在15FPS的幀率下生成全局一致的位姿和稠密幾何圖形。 01 ? 本文核心內(nèi)容 視覺SLAM乃是當今機器人技術(shù)與增強現(xiàn)實產(chǎn)品的基礎(chǔ)性構(gòu)建模塊。通過
    的頭像 發(fā)表于 12-27 15:25 ?1297次閱讀

    利用VLM和MLLMs實現(xiàn)SLAM語義增強

    語義同步定位與建圖(SLAM)系統(tǒng)在對鄰近的語義相似物體進行建圖時面臨困境,特別是在復雜的室內(nèi)環(huán)境中。本文提出了一種面向?qū)ο?b class='flag-5'>SLAM的語義增強(SEO-SLAM)的新型SLAM系統(tǒng),借
    的頭像 發(fā)表于 12-05 10:00 ?1192次閱讀
    利用VLM和MLLMs實現(xiàn)<b class='flag-5'>SLAM</b>語義增強

    最新圖優(yōu)化框架,全面提升SLAM定位精度

    同時定位與地圖構(gòu)建(SLAM)是一項關(guān)鍵技術(shù),允許移動機器人在部分或完全未知的環(huán)境中自主導航。它包括使用機載傳感器同時估計機器人狀態(tài)和構(gòu)建傳感器檢測到的環(huán)境地圖。SLAM可以根據(jù)傳感器和地圖構(gòu)建技術(shù)
    的頭像 發(fā)表于 11-12 11:26 ?1159次閱讀
    最新圖優(yōu)化框架,全面提升<b class='flag-5'>SLAM</b>定位精度

    激光雷達在SLAM算法中的應(yīng)用綜述

    SLAM算法運行的重要傳感器?;诩す饫走_的SLAM算法,對激光雷達SLAM總體框架進行介紹,詳細闡述前端里程計、后端優(yōu)化、回環(huán)檢測、地圖構(gòu)建模塊的作用并總結(jié)所使用的算法;按由2D
    的頭像 發(fā)表于 11-12 10:30 ?2368次閱讀
    激光雷達在<b class='flag-5'>SLAM</b>算法中的應(yīng)用綜述

    MG-SLAM:融合結(jié)構(gòu)化線特征優(yōu)化高斯SLAM算法

    的有前途的方法。利用顯式 3D 高斯表示,高斯 SLAM 可提供高保真渲染和細粒度場景重建,從而克服了基于 NeRF 的方法的局限性。
    的頭像 發(fā)表于 11-11 16:17 ?814次閱讀
    MG-<b class='flag-5'>SLAM</b>:融合結(jié)構(gòu)化線特征優(yōu)化<b class='flag-5'>高斯</b><b class='flag-5'>SLAM</b>算法

    從算法角度看 SLAM(第 2 部分)

    作者: Aswin S Babu 正如我們在[第 1 部分]中所討論的,SLAM 是指在無地圖區(qū)域中估計機器人車輛的位置,同時逐步繪制該區(qū)域地圖的過程。根據(jù)使用的主要技術(shù),SLAM 算法可分為三種
    的頭像 發(fā)表于 10-02 16:39 ?743次閱讀
    從算法角度看 <b class='flag-5'>SLAM</b>(第 2 部分)

    安寶特產(chǎn)品 安寶特3D Analyzer:智能的3D CAD高級分析工具

    安寶特3D Analyzer包含多種實用的3D CAD高級分析工具,包括自動比對模型、碰撞檢測、間隙檢查、壁厚檢查,以及拔模和底切分析,能夠有效提升
    的頭像 發(fā)表于 08-07 10:13 ?700次閱讀
    安寶特產(chǎn)品  安寶特<b class='flag-5'>3D</b> Analyzer:智能的<b class='flag-5'>3D</b> CAD高級<b class='flag-5'>分析</b>工具

    裸眼3D筆記本電腦——先進的光裸眼3D技術(shù)

    效果的用戶,這款筆記本電腦都能滿足你的需求。 一、卓越的3D模型設(shè)計能力 英倫科技裸眼3D筆記本電腦采用最新的光裸眼3D技術(shù),使用戶無需佩戴3D
    的頭像 發(fā)表于 07-16 10:04 ?972次閱讀

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術(shù)信息
    • 參加活動獲取豐厚的禮品