0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于高光譜成像技術(shù)的山楂產(chǎn)地判別建模分析

萊森光學(xué) ? 來源:萊森光學(xué) ? 作者:萊森光學(xué) ? 2024-03-15 14:54 ? 次閱讀

山楂(Crataegus Pinnatifida)是薔薇科山楂屬植物,是典型的“藥食同源”植物,在我國廣泛分布于吉林、遼寧、河北、河南、山東、山西等地區(qū)。我國山楂年產(chǎn)量超過 150萬噸,市場前景廣闊,但由于不同產(chǎn)地的山楂中各類營養(yǎng)成分含量存在差異,因此其在價格上也有所區(qū)分,而當(dāng)今山楂市場上產(chǎn)地混用、以次充好等現(xiàn)象屢見不鮮,使許多消費(fèi)者上當(dāng)受騙,這些現(xiàn)象嚴(yán)重破壞了市場秩序。因此,目前市場亟需一種能夠快速準(zhǔn)確對山楂進(jìn)行產(chǎn)地溯源的方法。

為滿足市場需求,本文旨在探究高光譜成像技術(shù)在山楂產(chǎn)地識別中的應(yīng)用及不同采樣方向?qū)τ谀P头诸愋阅艿挠绊?,利用高光譜成像系統(tǒng)(410~2500 nm),分別采集山楂樣本果梗面、側(cè)面及底面的光譜數(shù)據(jù),結(jié)合多種機(jī)器學(xué)習(xí)算法分別建立產(chǎn)地識別模型,最終實現(xiàn)基于高光譜成像技術(shù)對山楂進(jìn)行產(chǎn)地溯源的目的。

續(xù)

二、結(jié)果與分析

2.3 基于全波段的建模分析

2.3.1預(yù)處理及分類建模方法

篩選為篩選出最佳預(yù)處理和分類建模方法,分別采用4種預(yù)處理方法和3種分類建模方法建立模型,以樣本底面數(shù)據(jù)為代表,各模型分類準(zhǔn)確率見表1。對比四種預(yù)處理數(shù)據(jù)分類模型準(zhǔn)確率可以發(fā)現(xiàn),引入預(yù)處理方法之后,大部分模型的分類精度得到了提高,而D1對于三種分類模型(PLSDA、SVM和RF)均為最優(yōu)預(yù)處理方式。對比三種不同模型(PLSDA、SVM和RF)分類準(zhǔn)確率,發(fā)現(xiàn)無論采用哪種預(yù)處理方式,采用RF建立的分類模型雖然有較高的訓(xùn)練集準(zhǔn)確率,但是預(yù)測集準(zhǔn)確率一般;采用PLSDA和SVM建立的分類模型訓(xùn)練集和預(yù)測集準(zhǔn)確率良好,其中以SVM模型分類準(zhǔn)確率最高。綜上所述,對于底面數(shù)據(jù),D1為最佳預(yù)處理方式,采用SVM建立的分類模型分類準(zhǔn)確率高,且具有優(yōu)秀的穩(wěn)定性和泛化能力。為進(jìn)一步驗證結(jié)論,分別使用C和G數(shù)據(jù)集進(jìn)行建模對比,均呈現(xiàn)相同的規(guī)律,故判斷D1為最優(yōu)預(yù)處理方式,SVM為最佳分類建模算法,后續(xù)均采用D1-SVM(經(jīng)D1預(yù)處理后建立的SVM模型)方式進(jìn)行分類建模。

表1不同預(yù)處理分類模型準(zhǔn)確率

wKgaomXz8KSAY7j7AADt8_9VhLc528.png

2.3.2不同采樣方式分類建模分析

本研究為探究不同采樣方向?qū)δP头诸惤Y(jié)果的影響,分別收集了樣本側(cè)面朝上(C)、果梗面朝上(G)和底面朝上(D)的高光譜圖像。同時為模擬實際應(yīng)用時隨機(jī)拍攝到的高光譜數(shù)據(jù),將三個數(shù)據(jù)集進(jìn)行等比混合建立一個新數(shù)據(jù)集(R),使用四個數(shù)據(jù)集分別進(jìn)行分類建模,建模方法均采用D1-SVM,綜合對比各項指標(biāo)篩選出最優(yōu)模型。各模型分類準(zhǔn)確率結(jié)果見表2。

對于使用R數(shù)據(jù)集建立的分類模型,其準(zhǔn)確率較高(100%,96.7%),根據(jù)圖4d并由公式(3)和公式(4)計算得出,不同產(chǎn)區(qū)的精確率和召回率均超過90%。對比四個數(shù)據(jù)集模型的準(zhǔn)確率可以發(fā)現(xiàn),三種單面數(shù)據(jù)集(C、D和G)模型準(zhǔn)確率均高于使用R數(shù)據(jù)集建立的模型,這說明對于山楂樣本,在高光譜數(shù)據(jù)采集時保持樣品方向一致可以有效提高分類模型準(zhǔn)確率,這一規(guī)律與研究人員在玉米真菌感染檢測中的發(fā)現(xiàn)一致。橫向?qū)Ρ菴、G和D三個模型,其中使用D數(shù)據(jù)集建立的分類模型準(zhǔn)確率最高,訓(xùn)練集和預(yù)測集準(zhǔn)確率均達(dá)到100%,各產(chǎn)區(qū)樣本全部預(yù)測正確。為避免過擬合現(xiàn)象,對D-D1-SVM模型進(jìn)行十折交叉驗證,其平均準(zhǔn)確率為98.8%。綜上所述,D-D1-SVM模型對于不同產(chǎn)區(qū)山楂的分類效果最優(yōu)。

表2不同方向數(shù)據(jù)分類模型準(zhǔn)確率

wKgZomXz8KWAFa7AAAB6tATO2i0087.png

wKgaomXz8KWAU-6yAAQvIzp0HFk910.png

圖4全波段模型混淆矩陣

注:a、b、c、d分別為對應(yīng)C-D1-SVM、

G-D1-SVM、D-D1-SVM、R-D1-SVM四個模型

2.4 基于特征波長的建模分析

2.4.1特征波長的選擇

為篩選出最佳特征提取方法,分別使用2種提取方式提取4個數(shù)據(jù)集的特征波長,最終得到的波長見表3及圖5。對比兩種方法提取得到的特征波長數(shù)量發(fā)現(xiàn),使用SPA提取出的特征波長數(shù)量明顯少于CARS,進(jìn)一步觀察特征波長分布(圖5),發(fā)現(xiàn)使用SPA提取出的特征波長分布均勻,各個波段均有涉及;而CARS提取的特征波長分布較為集中,主要分布于750nm、2000nm及2250nm處的三個特征峰。觀察各組特征波長重合的部分,發(fā)現(xiàn)750nm、1700nm和2200nm附近的重合波長較多,說明這三處吸收峰可能包含不同產(chǎn)區(qū)樣本的差異信息。對這些特征峰進(jìn)行深入分析,700~800nm處的吸收峰來自于樣品內(nèi)部的葉綠素,也受樣品的外部顏色特征影響;1700nm附近的吸收峰可歸因于酰胺基團(tuán);2200nm處的吸收峰為C—H和C—O的聯(lián)合吸收峰。

表3不同方法提取特征波長數(shù)量

wKgZomXz8KWAJ_dMAAB6PbJji1Q536.png

wKgaomXz8KaAd1h4AAQtYXO8XWI537.png

圖5不同數(shù)據(jù)集特征波長

注:a、c、e、g分別為G、C、D和R數(shù)據(jù)集經(jīng)SPA提取得到的特征波長;b、d、f、h分別為G、C、D和R數(shù)據(jù)集經(jīng)CARS提取得到的特征波長

2.4.2特征波長建模分析

使用4個數(shù)據(jù)集的特征波長分別建立SVM模型,其準(zhǔn)確率見表4。觀察發(fā)現(xiàn)使用SPA篩選特征波長建立的模型分類準(zhǔn)確率優(yōu)于CARS,這一現(xiàn)象在G和D數(shù)據(jù)集上尤為明顯。綜合考慮波長數(shù)量和模型準(zhǔn)確率,SPA篩選的波長數(shù)量更少,模型復(fù)雜度較低,且準(zhǔn)確率更高。與本研究得到的結(jié)果不同,有研究人員在基于特征波段建立紅景天分類模型時,發(fā)現(xiàn)CARS為最佳特征波段提取方法,這說明對于不同的檢測對象,應(yīng)當(dāng)選用不同的特征提取方法,而對于山楂樣本,SPA相比于CARS特征波長提取效果更好。

采用SPA提取特征波長的分類模型預(yù)測集混淆矩陣見圖6,對比四個數(shù)據(jù)集的準(zhǔn)確率(表4)看出,R-SPA模型預(yù)測集準(zhǔn)確率為87.8%,根據(jù)其混淆矩陣(圖6d)并由公式(3)和公式(4)計算得出,模型對于河北產(chǎn)區(qū)的精確率和召回率僅為79.2%和82.4%,分類能力一般。而C-SPA、G-SPA和D-SPA三個模型準(zhǔn)確率均超過90%(分別為90.3%、91.5%和93%),這一現(xiàn)象再次證明在高光譜數(shù)據(jù)采集時,保持樣品方向一致可以有效提高分類模型準(zhǔn)確率。綜合對比所有模型,D-SPA模型擁有最高的分類準(zhǔn)確率,訓(xùn)練集和預(yù)測集準(zhǔn)確率分別為95.2%和93%,根據(jù)其混淆矩陣(圖6c)并由公式(3)和公式(4)計算得出,模型對于各產(chǎn)區(qū)的精確率和召回率均超過90%(其中山東產(chǎn)區(qū)精確率和召回率最低,分別為91.6%和90%);且這一模型涉及的特征波長數(shù)量最少,在保證分類準(zhǔn)確率的情況下?lián)碛休^低的模型復(fù)雜度。

綜上所述,采集高光譜數(shù)據(jù)時保持樣品擺放方式一致有助于提高模型分類準(zhǔn)確率。采用SPA提取特征波長建立的產(chǎn)地分類模型復(fù)雜度較低且準(zhǔn)確率良好??梢栽诓ㄩL數(shù)量有限的情況下對山楂產(chǎn)地進(jìn)行判別,為后續(xù)山楂專屬小型化高光譜設(shè)備的開發(fā)提供了方法參考。

表4特征波長建模準(zhǔn)確率

wKgZomXz8KaABXfcAACh393vbBI140.png

wKgaomXz8KaAYBduAAQYMQRy2z8804.png

圖6特征波長模型混淆矩陣

注:a、b、c、d分別對應(yīng)C-SPA-SVM、G-SPA-SVM、D-SPA-SVM、R-SPA-SVM四個模型。

綜合考慮全波段模型和特征波長模型的分類結(jié)果,發(fā)現(xiàn)采集樣本光譜數(shù)據(jù)時,樣本的擺放方式會影響后續(xù)分類建模準(zhǔn)確率。無論全波段還是特征波長模型,使用D數(shù)據(jù)集建模分類效果都明顯優(yōu)于R數(shù)據(jù)集(提高了約5%),相對于C和G數(shù)據(jù)集也有所提高。觀察山楂樣品的外部特征,發(fā)現(xiàn)樣品底面存在萼片部位,結(jié)合寧素云等的研究報道:山楂不同部位的化學(xué)成分含量存在差異,推測不同產(chǎn)地山楂其萼片部位各成分含量的差異相比于其他部位更大,進(jìn)而導(dǎo)致分類特征更加明顯。

三、結(jié)論

本研究基于高光譜成像技術(shù)建立了山楂產(chǎn)地識別模型。為探究樣本拍攝方向?qū)Ψ诸惤Y(jié)果的影響,采集了山楂樣本三個不同方向(C、G和D)的光譜數(shù)據(jù),分別使用偏最小二乘判別分析(PLSDA)、支持向量機(jī)(SVM)和隨機(jī)森林(RF)三種方法建立模型,通過對比模型分類準(zhǔn)確率得到最優(yōu)建模方法,最終成功區(qū)分了5個不同省級產(chǎn)區(qū)的山楂,為山楂無損檢測設(shè)備的開發(fā)提供了參考。經(jīng)過對比篩選發(fā)現(xiàn),一階導(dǎo)數(shù)(D1)為最優(yōu)預(yù)處理方式,SVM為最優(yōu)建模算法;使用連續(xù)投影算法(SPA)提取特征波長數(shù)量少且分類模型準(zhǔn)確率高。全波段最優(yōu)建模方法為D-D1-SVM,訓(xùn)練集和預(yù)測集準(zhǔn)確率均達(dá)到100%;特征波長最優(yōu)建模方法為D-SPA-SVM,訓(xùn)練集和預(yù)測集準(zhǔn)確率分別為95.2%和93%。本研究證明基于高光譜成像技術(shù)對山楂產(chǎn)地進(jìn)行溯源是可行的,為維護(hù)山楂市場秩序提供一種新的識別方式;同時驗證高光譜圖像采集方向會對檢測結(jié)果產(chǎn)生影響,為后續(xù)開發(fā)山楂專屬高光譜檢測設(shè)備提供理論依據(jù)和參考。

推薦

便攜式高光譜成像系統(tǒng) iSpecHyper-VS1000

專門用于公安刑偵、物證鑒定、醫(yī)學(xué)醫(yī)療、精準(zhǔn)農(nóng)業(yè)、礦物地質(zhì)勘探等領(lǐng)域的最新產(chǎn)品,主要優(yōu)勢具有體積小、幀率高、高光譜分辨率高、高像質(zhì)等性價比特點(diǎn)采用了透射光柵內(nèi)推掃原理高光譜成像,系統(tǒng)集成高性能數(shù)據(jù)采集與分析處理系統(tǒng),高速USB3.0接口傳輸,全靶面高成像質(zhì)量光學(xué)設(shè)計,物鏡接口為標(biāo)準(zhǔn)C-Mount,可根據(jù)用戶需求更換物鏡。

wKgZomXz8KeABypBAAG-q9GWvYo324.png


審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 成像
    +關(guān)注

    關(guān)注

    2

    文章

    242

    瀏覽量

    30515
  • 高光譜
    +關(guān)注

    關(guān)注

    0

    文章

    342

    瀏覽量

    9976
收藏 人收藏

    評論

    相關(guān)推薦

    基于光譜成像的法醫(yī)痕跡非接觸分析

    近年來,光譜成像(HIS)組件的技術(shù)進(jìn)步為其在法醫(yī)學(xué)應(yīng)用中提供了廣闊的前景。當(dāng)HSI被引入法醫(yī)學(xué)案件調(diào)查時,它能夠幫助調(diào)查人員無損地檢測、可視化和識別重要的痕跡。
    的頭像 發(fā)表于 10-28 16:12 ?171次閱讀
    基于<b class='flag-5'>高</b><b class='flag-5'>光譜成像</b>的法醫(yī)痕跡非接觸<b class='flag-5'>分析</b>

    光譜成像儀在農(nóng)業(yè)上的應(yīng)用

    隨著科技的不斷進(jìn)步,光譜成像儀在農(nóng)業(yè)領(lǐng)域的應(yīng)用越來越廣泛。光譜成像技術(shù)結(jié)合了成像
    的頭像 發(fā)表于 10-17 15:16 ?330次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜成像</b>儀在農(nóng)業(yè)上的應(yīng)用

    無人機(jī)機(jī)載光譜成像系統(tǒng)的應(yīng)用及優(yōu)勢

      隨著無人機(jī)技術(shù)的快速發(fā)展,基于無人機(jī)平臺的光譜成像系統(tǒng)在多個領(lǐng)域中得到了廣泛應(yīng)用。本文將介紹一款小型多旋翼無人機(jī)機(jī)載光譜成像系統(tǒng),該
    的頭像 發(fā)表于 08-15 15:03 ?774次閱讀
    無人機(jī)機(jī)載<b class='flag-5'>高</b><b class='flag-5'>光譜成像</b>系統(tǒng)的應(yīng)用及優(yōu)勢

    實驗室光譜成像儀的應(yīng)用與優(yōu)勢

    光譜成像技術(shù)(Hyperspectral Imaging, HSI)作為一種前沿的成像技術(shù),已經(jīng)在多個領(lǐng)域展現(xiàn)出其卓越的應(yīng)用潛力。從遙感監(jiān)
    的頭像 發(fā)表于 05-20 10:27 ?740次閱讀
    實驗室<b class='flag-5'>高</b><b class='flag-5'>光譜成像</b>儀的應(yīng)用與優(yōu)勢

    光譜成像儀的數(shù)據(jù)怎么看

    光譜成像(Hyperspectral Imaging, HSI)是一種先進(jìn)的成像技術(shù),它結(jié)合了成像技術(shù)
    的頭像 發(fā)表于 05-17 10:02 ?595次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜成像</b>儀的數(shù)據(jù)怎么看

    光譜成像技術(shù)在膚檢測、植被遙感與環(huán)境檢測中的應(yīng)用

    光譜成像技術(shù)(Hyperspectral Imaging, HSI)是一種集光譜成像于一體的技術(shù)
    的頭像 發(fā)表于 05-16 15:31 ?827次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜成像</b><b class='flag-5'>技術(shù)</b>在膚檢測、植被遙感與環(huán)境檢測中的應(yīng)用

    光譜成像系統(tǒng)解析

    光譜成像技術(shù),一種在多個行業(yè)中愈發(fā)重要的先進(jìn)技術(shù),提供了一種深入了解物體表面特性的全新方式。本文將詳細(xì)探討
    的頭像 發(fā)表于 04-16 14:59 ?817次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜成像</b>系統(tǒng)解析

    光譜成像技術(shù):從原理到應(yīng)用的全面指南

    的應(yīng)用。 1. 光譜成像簡介 光譜成像是一種利用光譜信息來獲取圖像中每個像素的頻譜的技術(shù)。相
    的頭像 發(fā)表于 04-15 17:36 ?2114次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜成像</b><b class='flag-5'>技術(shù)</b>:從原理到應(yīng)用的全面指南

    光譜成像系統(tǒng):光譜成像技術(shù)在海域目標(biāo)探測中的應(yīng)用

    在現(xiàn)代戰(zhàn)爭中,信息對抗已經(jīng)成為決定戰(zhàn)爭勝負(fù)的關(guān)鍵,而基于航空平臺獲取軍事信息具有時效性強(qiáng),偵查范圍廣等特點(diǎn),是重要的偵察手段之一。利用光譜成像技術(shù)對地、對海進(jìn)行偵察將獲取更豐富的目標(biāo)信息,極大
    的頭像 發(fā)表于 04-02 17:19 ?1253次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜成像</b>系統(tǒng):<b class='flag-5'>光譜成像</b><b class='flag-5'>技術(shù)</b>在海域目標(biāo)探測中的應(yīng)用

    光譜成像技術(shù)原理及其優(yōu)勢

    光譜成像技術(shù)是一種將成像技術(shù)光譜技術(shù)結(jié)合的影像數(shù)
    的頭像 發(fā)表于 03-27 06:34 ?922次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜成像</b><b class='flag-5'>技術(shù)</b>原理及其優(yōu)勢

    基于光譜成像技術(shù)山楂產(chǎn)地判別方法

    測量前需要對樣本進(jìn)行粉碎或勻漿處理,并使用有機(jī)溶劑對樣本中的化學(xué)成分進(jìn)行萃取,這一過程不但會損壞樣本,同時有機(jī)溶劑還可能會對環(huán)境造成污染。與之相比,光譜成像技術(shù)是一種基于非常多窄波段的影像數(shù)據(jù)
    的頭像 發(fā)表于 03-14 11:08 ?381次閱讀
    基于<b class='flag-5'>高</b><b class='flag-5'>光譜成像</b><b class='flag-5'>技術(shù)</b>的<b class='flag-5'>山楂</b><b class='flag-5'>產(chǎn)地</b><b class='flag-5'>判別</b>方法

    避免光譜成像數(shù)據(jù)中的光譜混疊問題

    光譜成像技術(shù)在農(nóng)業(yè)、環(huán)境監(jiān)測、醫(yī)學(xué)診斷等領(lǐng)域具有廣泛的應(yīng)用前景。然而,光譜混疊是光譜成像數(shù)據(jù)
    的頭像 發(fā)表于 02-27 15:27 ?937次閱讀

    如何開展光譜成像技術(shù)在農(nóng)業(yè)遺傳育種中的應(yīng)用研究?

    技術(shù)逐漸成為一種有效的工具,能夠為農(nóng)業(yè)遺傳育種提供新的解決方案。 了解光譜成像技術(shù) 光譜成像
    的頭像 發(fā)表于 02-20 14:54 ?789次閱讀
    如何開展<b class='flag-5'>高</b><b class='flag-5'>光譜成像</b><b class='flag-5'>技術(shù)</b>在農(nóng)業(yè)遺傳育種中的應(yīng)用研究?

    光譜成像儀原理 多光譜成像儀能測什么

    光譜成像儀是一種可以同時獲取多頻段光譜信息的成像設(shè)備,它不同于普通的彩色相機(jī)或單光束傳感器,能夠提供更為豐富的光譜特征,廣泛應(yīng)用于農(nóng)業(yè)、環(huán)境監(jiān)測、遙感、生物醫(yī)學(xué)等領(lǐng)域。本文將詳細(xì)介紹
    的頭像 發(fā)表于 02-20 11:27 ?2337次閱讀

    如何使用光譜成像技術(shù)進(jìn)行作物健康監(jiān)測?

    技術(shù)通過采集和分析作物的光譜數(shù)據(jù),可以提供詳細(xì)的作物健康信息,包括營養(yǎng)狀況、病蟲害情況和水分狀況等。本文將探討
    的頭像 發(fā)表于 01-29 16:24 ?659次閱讀
    如何使用<b class='flag-5'>高</b><b class='flag-5'>光譜成像</b><b class='flag-5'>技術(shù)</b>進(jìn)行作物健康監(jiān)測?