隨著信號(hào)傳輸速度的提高和供電電壓的降低,集成電路對(duì)瞬態(tài)ESD更加敏感。電路中連接的設(shè)備也日益增多,因此保護(hù)更廣泛系統(tǒng)中每個(gè)設(shè)備免受ESD的影響就變得更加重要。那么,為ESD保護(hù)選擇正確的元件時(shí)需要考慮哪些因素?
隨著物聯(lián)網(wǎng) (IoT) 不斷擴(kuò)展,分析師預(yù)測(cè)未來幾年將有多達(dá)數(shù)十億的電子設(shè)備上線。通用電子設(shè)備總數(shù)甚至更高。這些設(shè)備中有許多將在我們生活中發(fā)揮重要作用,例如實(shí)現(xiàn)家庭自動(dòng)化的消費(fèi)設(shè)備。還有一些嵌入式裝置可能被深深隱藏起來,難以被察覺,例如嵌入到車輛內(nèi)部和智能樓宇內(nèi)部。所有這些設(shè)備都容易受到靜電放電 (ESD) 的影響。隨著物聯(lián)網(wǎng)的包容范圍逐漸擴(kuò)大,這數(shù)十億設(shè)備中的任何一部分都可能變得至關(guān)重要。鑒于此,這些設(shè)備的ESD保護(hù)設(shè)計(jì)變得更加重要。
即使PCB組裝好并安裝到設(shè)備中,ESD仍然是引發(fā)故障的主要原因之一?,F(xiàn)代化集成設(shè)備設(shè)計(jì)得足夠堅(jiān)固,以確保在操作過程中幾乎不會(huì)發(fā)生故障。這對(duì)操作條件提出了重大挑戰(zhàn)。雖然工程師能考慮到濕度、溫度和振動(dòng)等極端環(huán)境條件,但大部分ESD仍然是不可預(yù)測(cè)的。所以,最好的方法是充分保護(hù)設(shè)備免受靜電放電的影響IEC 61000-4-2等標(biāo)準(zhǔn)按照測(cè)試所用放電電壓強(qiáng)度定義了保護(hù)級(jí)別,比如IEC 61000-4-2針對(duì)±2 kV的接觸放電和空氣放電電壓,而第4級(jí)(找元器件現(xiàn)貨上唯樣商城)則規(guī)定了±8 kV的接觸放電和±15 kV的空氣放電。為確保可重復(fù)的結(jié)果,這些標(biāo)準(zhǔn)中還精確規(guī)定了放電方法和測(cè)試瞬態(tài)的波形。測(cè)試過程中廣泛采用的人體模型在MIL-STD-883和JEDEC JS-001等標(biāo)準(zhǔn)給出了定義。
ESD對(duì)電子元件的影響
按照行業(yè)慣例,制造商通常采用黃色和黑色警示符來標(biāo)識(shí)靜電敏感設(shè)備。集成電路以具有絕緣柵的金屬氧化物半導(dǎo)體晶體管為基礎(chǔ),是公認(rèn)的靜電敏感設(shè)備。此外,隨著供電電壓不斷降低(廣泛用于降低功耗的技術(shù)),元件的固有ESD保護(hù)性能會(huì)進(jìn)一步降低。
現(xiàn)在幾乎所有的通用集成電路都基于CMOS工藝,并且許多導(dǎo)軌的供電電壓僅為1V甚至更低。這使得集成電路更容易受到瞬態(tài)ESD的影響。一旦集成電路暴露于高電壓和大電流放電條件下,部分可能會(huì)立即被破壞或輕微受損,從而極大地縮短了其使用壽命。鑒于受影響的嚴(yán)重程度各不相同,評(píng)估集成電路的健康狀態(tài)就變得更加困難。
瞬態(tài)條件可能轉(zhuǎn)瞬即逝,不造成任何損壞,也可能對(duì)互聯(lián)造成不可修復(fù)地破壞??紤]到基板、引線框架和封裝的性質(zhì),很難在集成電路中集成充分的ESD保護(hù)功能。因此,必須在外部添加此類保護(hù)元件,并放置在能及時(shí)攔截放電的位置。通常,這意味著保護(hù)須盡可能靠近薄弱點(diǎn)。
隨著設(shè)計(jì)實(shí)踐的改變,了解這些新特性會(huì)如何影響所選保護(hù)元件的類型至關(guān)重要。通常情況下,選擇是多樣性的,但某些設(shè)計(jì)特性(如高速串行總線)會(huì)限制某些ESD元件的有效性或適用性。必須根據(jù)待保護(hù)信號(hào)的特性評(píng)估插入損耗和擊穿電壓等參數(shù),以保證保護(hù)始終發(fā)揮作用。
關(guān)于ESD保護(hù)元件
ESD保護(hù)元件基本上基于半導(dǎo)體或陶瓷材料。其中半導(dǎo)體為瞬態(tài)電壓抑制器 (TVS) 的形式,基本上是二極管(圖1),而陶瓷材料則為壓敏電阻的形式?,F(xiàn)代壓敏電阻通常為帶有一定電容的多層元件(MLV;圖2),可能很有用,但也可能影響高速總線的切換動(dòng)作。若插入電容不存在這樣的限制,多層陶瓷電容器 (MLCC) 也適用于ESD保護(hù)。
由電容引起的插入損耗是決定采用基于半導(dǎo)體的TVS還是基于陶瓷的MLV元件的關(guān)鍵因素。雖然很多情況下這兩種解決方案基本可以互換使用,但具體到應(yīng)用應(yīng)考慮各個(gè)元件的不同插入損耗,比如對(duì)于速度為1 Mb/s信號(hào),保護(hù)裝置在0.5 MHz頻率下應(yīng)具有較低的插入損耗。詳細(xì)說明請(qǐng)參見數(shù)據(jù)表。
此外,壓敏電阻的電容也可作為電路層面抗電磁干擾 (EMI) 措施的一部分。截止到目前,這個(gè)特性很少被使用。不過隨著制造商生產(chǎn)技術(shù)的改良,能夠更好地控制壓敏電阻的電容公差。因此,電容可作為EMI濾波器的一部分。MLV的電容可從1到100 pF不等,并且超高電容壓敏電阻 (SHCV) 的電容甚至更高,遠(yuǎn)超TVS二極管。
不同ESD保護(hù)選項(xiàng)比較
由于這兩種元件吸收瞬態(tài)過電壓的方式不同,工程師可在許多應(yīng)用中將TVS和MLV解決方案用作互為替代的方案。它們的尺寸通常相似,占板空間也幾乎相同,而且由于體積小,可靠近潛在的ESD排放點(diǎn)安裝,比如外部接口或充電口。
圖3:ESD技術(shù)選型指南
如圖3中的圖表所示,MLV涵蓋的應(yīng)用領(lǐng)域比TVS二極管更廣,并且有商業(yè)級(jí)和汽車級(jí)兩種規(guī)格。以下考慮因素可以幫助設(shè)計(jì)工程師進(jìn)行更詳細(xì)的比較。
工作電壓:若尺寸相差不大,MLV和TVS的響應(yīng)時(shí)間可能近似(均為幾納秒),并且對(duì)過電壓的保護(hù)效果類似(見圖4)。不過,TVS二極管的擊穿電壓較低,能更快地限制瞬態(tài)電壓,因此更適合電壓較低的應(yīng)用。
魯棒性:隨著工作溫度的增加,TVS元件的性能會(huì)下降。但基于陶瓷材料MLV更為堅(jiān)固,并且在高達(dá)+150℃的溫度下工作性能也不會(huì)下降。相比之下,基于半導(dǎo)體的TVS二極管的性能在溫度超過+25℃時(shí)就開始下降。
成熟度和成本:這兩種技術(shù)都很成熟,但此前MLV的全球產(chǎn)量較低,因此更昂貴。不過,其新開發(fā)出了尺寸更小的元件,因此在可穿戴設(shè)備等小型應(yīng)用中更具吸引力。另外,隨著產(chǎn)量的不斷增加,其平均售價(jià)已降低到具有可比性和競(jìng)爭(zhēng)力的水平。
電容和電磁干擾 (EMI) 濾波:由于MLV的寄生電容可在制造過程中控制,不僅可提供ESD保護(hù),還能抑制EMI,可用于取代兩個(gè)獨(dú)立的元件(TVS二極管和MLCC電容器),從而節(jié)省了占板空間。在不增加加工成本的前提下,無法像控制MLV的電容那樣控制TVS二極管的電容。(見圖5)
圖4:TVS和MLV在過電壓事件時(shí)的反應(yīng)
圖5:ESD陷波濾波器的功能
插入損耗:這很大程度上取決于元件的電容和被保護(hù)線路上的信號(hào)頻率。結(jié)果是頻率(比如>1 GHz)越高,相關(guān)性更緊密,并需要具有最低電容的解決方案。在較低電壓下,可能TVS二極管更適用,但在較高電壓下,MLV會(huì)更具優(yōu)勢(shì)。
漏電流:這一因素并非選擇MLV或TVS二極管的主要設(shè)計(jì)考慮因素。這兩種技術(shù)都存在一定的漏電流,并且相差不大。
物理尺寸:隨著MLV技術(shù)的發(fā)展,制造工藝變得更加復(fù)雜。MLV現(xiàn)在可提供與多層陶瓷電容器 (MLCC) 類似的尺寸,并且有望進(jìn)一步減小。但需謹(jǐn)記,元件可提供的保護(hù)水平仍然與其物理尺寸成正比。目前,01005是TVS和MLV技術(shù)可實(shí)現(xiàn)的最小封裝尺寸。
可互換性:在低頻和低電壓信號(hào)線的應(yīng)用中,這兩種技術(shù)能以相同的占板空間提供類似的ESD保護(hù)等級(jí)。而隨著應(yīng)用頻率的增加,TVS會(huì)變得更適用。但隨著電壓的升高,MLV則是更好的選擇。設(shè)計(jì)團(tuán)隊(duì)必須仔細(xì)研究應(yīng)用和可用元件,以確定最合適的技術(shù)。
審核編輯 黃宇
-
TDK
+關(guān)注
關(guān)注
19文章
696瀏覽量
79333 -
ESD保護(hù)
+關(guān)注
關(guān)注
0文章
433瀏覽量
27030
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論