0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

OpenAI“政變”進(jìn)行時(shí),“百模大戰(zhàn)”接下來(lái)該戰(zhàn)什么?

腦極體 ? 來(lái)源:腦極體 ? 作者:腦極體 ? 2023-11-21 18:20 ? 次閱讀

這兩天AI圈最熱鬧的消息,應(yīng)該就OpenAI高層內(nèi)訌,標(biāo)志性人物、原CEO Sam Altman被董事會(huì)解雇,數(shù)位科學(xué)家和高層離職。

關(guān)于“政變”的原因,坊間有很多傳言,比如商業(yè)化和非營(yíng)利原則的矛盾??傊?,事件相關(guān)者在輿論場(chǎng)拉扯,吃瓜群眾則瞪大了眼睛看戲。這場(chǎng)風(fēng)波會(huì)給全球AI研發(fā),尤其是大模型帶來(lái)什么影響,還是未知數(shù)。

有人做了一個(gè)梗圖,大模型廠商亂成一鍋粥,只有賣卡的英偉達(dá)穩(wěn)坐釣魚臺(tái)。

wKgaomVchGuAfhtEAADmoZ6UD6w515.jpg

任它天邊云卷云舒,可以肯定的是,中國(guó)的AI大模型在取得廣泛成就的基礎(chǔ)上,會(huì)繼續(xù)向前發(fā)展,釋放產(chǎn)業(yè)價(jià)值,并且不會(huì)一味照搬海外,尤其是OpenAI的模式。

帶著這份淡定,我們將目光聚焦在國(guó)產(chǎn)大模型,會(huì)發(fā)現(xiàn)“百模大戰(zhàn)”熱潮中,還缺乏對(duì)各類大模型全面、分層、真實(shí)的能力評(píng)估。

通用大模型、行業(yè)大模型,都在比拼參數(shù)規(guī)模,但訓(xùn)練數(shù)據(jù)質(zhì)量不確定,僅憑參數(shù),行業(yè)客戶和用戶也難以選對(duì)適合的大模型。

那么看榜單呢?基準(zhǔn)測(cè)試benchmark和標(biāo)準(zhǔn)化數(shù)據(jù)集,可以針對(duì)性調(diào)優(yōu),榜單無(wú)法反映實(shí)際應(yīng)用效果差距。

而且大模型在不同任務(wù)場(chǎng)景下,表現(xiàn)的區(qū)分度很大。一位開發(fā)者說(shuō),“現(xiàn)在就是告訴你都有哪些大模型,實(shí)際效果還是得靠自己測(cè)測(cè)看”。

據(jù)中國(guó)信通院的數(shù)據(jù)顯示,目前的大模型測(cè)試方法和數(shù)據(jù)集已有200多個(gè)。想要一個(gè)個(gè)測(cè)過(guò)來(lái),會(huì)給用戶帶來(lái)非常繁重的工作量。

“百模大戰(zhàn)”亂花漸欲迷人眼,那么,除了“跑分”打榜和參數(shù)“碾壓”,還有什么辦法來(lái)真實(shí)且有效地評(píng)判一個(gè)大模型的水平呢?

有必要來(lái)聊聊,“百模大戰(zhàn)”,不同賽道都在戰(zhàn)什么?

大模型,不看高分看高能

所謂“百模大戰(zhàn)”,并不是每個(gè)大模型都在做著同樣的事。其中,既有想做基座模型basemodle的通用大模型,如百度的文心、阿里的通義、騰訊的混元、華為的盤古、訊飛的星火、智譜的ChatGLM等,也有面向行業(yè)、場(chǎng)景的垂直大模型,目前在金融、教育、工業(yè)、傳媒、政務(wù)等多個(gè)領(lǐng)域都大量涌現(xiàn)。

不同賽道的大模型,其核心競(jìng)爭(zhēng)力也不一樣。比如一味拼算法的打榜,對(duì)于行業(yè)大模型來(lái)說(shuō),可以作為一種宣傳手段和“炫技”,但實(shí)際效果才是用戶最關(guān)注的。

目前不少開發(fā)者反映,各類大模型都存在各自的問(wèn)題。

1.基座模型,本身能力有限制。

提到通用大模型,大家可能第一時(shí)間想到的就是推理能力,這也是大模型基準(zhǔn)測(cè)試的主要指標(biāo)。但在實(shí)際應(yīng)用中,尤其是文科類型任務(wù),大家不會(huì)沒事出“腦筋急轉(zhuǎn)彎”來(lái)測(cè)試通用大模型的邏輯推理能力,而是更希望大模型在復(fù)雜任務(wù)和上下文長(zhǎng)度上,有更可靠的表現(xiàn)。

比如寫一篇演講文稿,篇幅一長(zhǎng)就開始胡說(shuō)八道或泛泛而談,文本的采用率下降;為AIGC配字幕,不能整篇生成,還需要人工將文案切割成片;編寫一個(gè)程序,半路開始network error……這些都是實(shí)際應(yīng)用中,大家比較關(guān)注的通用大模型的能力。

2.行業(yè)大模型,領(lǐng)域壁壘難翻越。

“百模大戰(zhàn)”進(jìn)行到當(dāng)下,很多行業(yè)開發(fā)者和企業(yè)都意識(shí)到,獨(dú)有的數(shù)據(jù)和場(chǎng)景,才是自己的護(hù)城河,開始打造定制化的大模型,而領(lǐng)域知識(shí)不夠,難以形成滿足某一領(lǐng)域需求的行業(yè)向產(chǎn)品。

比如大模型與行業(yè)知識(shí)不匹配、許多行業(yè)know-how還沒有知識(shí)化、傳統(tǒng)的知識(shí)圖譜與大模型的協(xié)同設(shè)計(jì)等,知識(shí)計(jì)算的能力不夠強(qiáng),就無(wú)法真正撼動(dòng)領(lǐng)域壁壘,讓大模型解決實(shí)際的業(yè)務(wù)問(wèn)題。

3.有用性,ROI是個(gè)謎。

大模型的實(shí)際應(yīng)用效果難以評(píng)估,其中一個(gè)主要原因,就是模型生成結(jié)果的有用性(采用率、可用率等指標(biāo)),涉及大量多模態(tài)數(shù)據(jù)。

金融、醫(yī)藥、交通、城市等產(chǎn)業(yè)中,存在著大量多模態(tài)信息,比如客服電話的語(yǔ)音、醫(yī)學(xué)影像圖片、傳感器數(shù)據(jù)等,大語(yǔ)言模型必須具備多模態(tài)理解能力,將多模態(tài)信息與語(yǔ)言進(jìn)行綜合分析處理,才能保證較高質(zhì)量的輸出。

在實(shí)際任務(wù)中,上述三種問(wèn)題可能會(huì)同時(shí)存在,要同時(shí)解決。

一位醫(yī)藥專家告訴我,在研發(fā)醫(yī)學(xué)影像的算法時(shí),就需要基座大模型在預(yù)訓(xùn)練階段就具備多模態(tài)理解能力、醫(yī)學(xué)影像知識(shí),可以執(zhí)行通用任務(wù)。同時(shí),行業(yè)側(cè)還需要根據(jù)知識(shí)設(shè)計(jì)目標(biāo)函數(shù),在特征抽取、相似性度量、迭代優(yōu)化算法等,都要貢獻(xiàn)好各自的知識(shí),才可能訓(xùn)練出一個(gè)對(duì)醫(yī)務(wù)工作者友好的領(lǐng)域大模型,不需要專業(yè)知識(shí),也不需要建模,就能上手使用。

就像工業(yè)革命的開始,是因?yàn)橥咛馗牧剂苏羝麢C(jī)。在此之前,蒸汽機(jī)早已被發(fā)明出來(lái)了,但一直沒有解決大規(guī)模高可用的問(wèn)題,大模型也是如此。

大模型產(chǎn)業(yè)化,必須從基準(zhǔn)測(cè)試的“跑高分”,向可信賴的“高能力”進(jìn)化。

百模大戰(zhàn),究竟在戰(zhàn)哪些能力?

從高分到高能,讓大模型具有與行業(yè)結(jié)合的可行性,也讓“百模大戰(zhàn)”正在進(jìn)入新的階段。

從產(chǎn)業(yè)實(shí)際需求來(lái)看,可用且有效的大模型,至少應(yīng)該具備幾個(gè)核心能力:

1.長(zhǎng)文能力。

大語(yǔ)言模型的技術(shù)特點(diǎn),被認(rèn)為是“鸚鵡學(xué)舌”,將輸入信號(hào)拼湊成有一定語(yǔ)法結(jié)構(gòu)的句子,也就是文本補(bǔ)全能力。而大模型都有“幻覺”,上下文窗口的長(zhǎng)度增加,邏輯幻覺就可能越嚴(yán)重,“鸚鵡學(xué)舌”開始變得吃力。

在很多垂直行業(yè)應(yīng)用中,如金融、法律、財(cái)務(wù)、營(yíng)銷等,長(zhǎng)文檔的分析處理和生成能力是剛需。

在長(zhǎng)文中保持邏輯的連貫性、合理性,考驗(yàn)著大模型的綜合能力,比如對(duì)復(fù)雜語(yǔ)句的理解及記憶能力,生成的可靠性,這也是大模型走向產(chǎn)業(yè)化的核心。

目前,無(wú)論開源、閉源大模型,都將長(zhǎng)文能力作為一個(gè)核心競(jìng)爭(zhēng)力。比如流行的開源大模型Llama 2,就將上下文長(zhǎng)度擴(kuò)展至 128k,而基于LLaMA架構(gòu)的零一萬(wàn)物的Yi系列大模型,此前曾宣稱拿下了全球最長(zhǎng)上下文窗口寶座,達(dá)到200K,可直接處理40萬(wàn)漢字超長(zhǎng)文本輸入。閉源大模型中,GPT-4 Turbo支持了比ChatGPT更長(zhǎng)的上下文(128k tokens),百度的文心大模型通過(guò)對(duì)話增強(qiáng),提升上下文理解能力。

2.知識(shí)能力。

大模型“大力出奇跡”的模式,忽略了模型準(zhǔn)確感知和理解注入知識(shí)的能力,目前已經(jīng)凸顯了很多問(wèn)題。比如不理解領(lǐng)域知識(shí),在實(shí)際業(yè)務(wù)中表現(xiàn)不佳,無(wú)法滿足ToB用戶的需求。因此,當(dāng)歐美科技公司依然在執(zhí)著追求更大參數(shù)時(shí),百度、華為等國(guó)內(nèi)大模型廠商,開始轉(zhuǎn)向了行業(yè)場(chǎng)景,將強(qiáng)業(yè)務(wù)知識(shí)引入文心、盤古的行業(yè)大模型之中,來(lái)提升大模型在行業(yè)任務(wù)中的應(yīng)用效果。

具體是怎么做的呢?以“行業(yè)知識(shí)增強(qiáng)”為核心特色的文心,是在預(yù)訓(xùn)練大模型的基礎(chǔ)上,進(jìn)一步融合大規(guī)模知識(shí)圖譜,挖掘行業(yè)應(yīng)用場(chǎng)景中大量存在的行業(yè)特色數(shù)據(jù)與知識(shí),再結(jié)合行業(yè)專家的知識(shí),從大規(guī)模知識(shí)和海量數(shù)據(jù)中融合學(xué)習(xí),把知識(shí)內(nèi)化至模型參數(shù)中。

當(dāng)用戶輸入問(wèn)題時(shí),文心4.0會(huì)拆解回答問(wèn)題所需的知識(shí)點(diǎn),進(jìn)而在搜索引擎、知識(shí)圖譜、數(shù)據(jù)庫(kù)中查找準(zhǔn)確知識(shí),再將知識(shí)組裝進(jìn)Prompt送入大模型。另一方面,大模型還將對(duì)輸出結(jié)果進(jìn)行反思,從生成結(jié)果總結(jié)知識(shí)點(diǎn),進(jìn)而通過(guò)以上方式進(jìn)行確認(rèn)驗(yàn)證,對(duì)結(jié)果差錯(cuò)進(jìn)行修正。

目前來(lái)看,在同等參數(shù)規(guī)模下,知識(shí)增強(qiáng)的深度語(yǔ)意理解,效果大幅超越了純粹用深度學(xué)習(xí)的方法,推理效率更高,并且可解釋性更強(qiáng),更符合產(chǎn)業(yè)對(duì)可信AI的需求。

目前,知識(shí)+大模型還有許多細(xì)節(jié)有待解決,比如知識(shí)體系的構(gòu)建,知識(shí)的持續(xù)獲取,知識(shí)應(yīng)用和推理等,這些問(wèn)題的攻克都會(huì)給行業(yè)認(rèn)知智能帶來(lái)重大機(jī)會(huì)。

3.多模態(tài)能力。

2022年我參加華為云AI院長(zhǎng)峰會(huì),一位科學(xué)家提到,大模型有一個(gè)問(wèn)題,就是有很多符號(hào)領(lǐng)域,大模型根本就不理解。他認(rèn)為,大模型是數(shù)據(jù)與知識(shí)雙輪驅(qū)動(dòng)的,雙輪驅(qū)動(dòng)是未來(lái)人工智能發(fā)展的重要模式。

前面我們說(shuō)了知識(shí)能力的重要性,那么“數(shù)據(jù)”究竟拼的是什么呢?就是多模態(tài)能力。

把大模型應(yīng)用到領(lǐng)域的時(shí)候,會(huì)發(fā)現(xiàn)問(wèn)題非常多,根本達(dá)不到預(yù)期的效果。一個(gè)主要原因,大語(yǔ)言模型完全是基于語(yǔ)言的,而真實(shí)世界的復(fù)雜任務(wù),有大量的數(shù)值、圖表、語(yǔ)音、視頻等多模態(tài)數(shù)據(jù),數(shù)據(jù)的多模態(tài)特性增加了模型處理、建模和推理的復(fù)雜性。

一位醫(yī)療模型的開發(fā)者告訴我,醫(yī)療任務(wù)分析非常繁雜,數(shù)量級(jí)很多,有不同模態(tài)、病種,每一種模態(tài)有不同的診療任務(wù),要把文本、圖像等多模態(tài)包容過(guò)來(lái),而醫(yī)療領(lǐng)域非常缺少多模態(tài)的預(yù)訓(xùn)練模型。

大模型要在實(shí)際業(yè)務(wù)中達(dá)到與人更接近的能力,也需要跨模態(tài)建立統(tǒng)一認(rèn)知。

舉個(gè)例子,AIGC生成營(yíng)銷活動(dòng)物料,根據(jù)文字描述生成圖像、視頻,既要精確理解提示詞的語(yǔ)義,還要符合領(lǐng)域規(guī)范,不能出現(xiàn)不合規(guī)的素材,同時(shí)要控制生成內(nèi)容的質(zhì)量,保持跨模態(tài)的語(yǔ)義一致性。

國(guó)產(chǎn)大模型在多模態(tài)領(lǐng)域也做了很多差異化探索,除了大家熟悉的以文生圖,在醫(yī)療影像、遙感、抗體藥物、交通等領(lǐng)域,跨模態(tài)技術(shù)融合也在快速開展,未來(lái)會(huì)是基座大模型和行業(yè)大模型的亮點(diǎn)。

從這些產(chǎn)業(yè)需要的能力來(lái)看,大模型的產(chǎn)業(yè)屬性和價(jià)值已經(jīng)清晰展露了出來(lái)。

大模型,絕不是聊聊天、搞怪圖片那么膚淺,技術(shù)覆蓋區(qū)域是很廣闊的,技術(shù)應(yīng)用價(jià)值已經(jīng)足夠具有說(shuō)服力。

但也必須承認(rèn),目前,絕大多數(shù)產(chǎn)業(yè)所獲取的技術(shù)能力和技術(shù)深度,都還遠(yuǎn)遠(yuǎn)不夠。一方面受限于上游的基座大模型能力,同時(shí)也缺乏深度定制化的中游服務(wù)商,導(dǎo)致用戶大多只能調(diào)用簡(jiǎn)單化、標(biāo)準(zhǔn)化的API,而難以將領(lǐng)域知識(shí)、多模態(tài)數(shù)據(jù)與大模型深度結(jié)合。

未來(lái),從高分到高能,國(guó)產(chǎn)大模型一定會(huì)依靠自身的差異化技術(shù)路線,以及中國(guó)豐富多樣的產(chǎn)業(yè)需求,從懵懂走向成熟,甚至先于歐美,走向千行百業(yè)

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    30887

    瀏覽量

    269063
  • OpenAI
    +關(guān)注

    關(guān)注

    9

    文章

    1087

    瀏覽量

    6508
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    OpenAI連續(xù)12天直播,揭秘新產(chǎn)品與功能

    近日,OpenAI CEO奧特曼在社交媒體上宣布了一項(xiàng)令人期待的計(jì)劃:在接下來(lái)的12天內(nèi),OpenAI將每天舉辦一場(chǎng)直播活動(dòng),用于發(fā)布和演示其最新的產(chǎn)品及功能。 據(jù)奧特曼透露,這次直播活動(dòng)將從
    的頭像 發(fā)表于 12-05 11:12 ?492次閱讀

    使用IBIS模型進(jìn)行時(shí)序分析

    電子發(fā)燒友網(wǎng)站提供《使用IBIS模型進(jìn)行時(shí)序分析.pdf》資料免費(fèi)下載
    發(fā)表于 10-21 10:00 ?0次下載
    使用IBIS模型<b class='flag-5'>進(jìn)行時(shí)</b>序分析

    人工智能熱潮減退,微軟或?qū)⒃谌陜?nèi)收購(gòu)OpenAI

    10月11日,福布斯發(fā)布消息稱,CCS Insight的首席分析師Ben Wood在接受其采訪時(shí)預(yù)測(cè),微軟或?qū)⒃?b class='flag-5'>接下來(lái)的三年內(nèi)收購(gòu)ChatGPT的開發(fā)者OpenAI。這一預(yù)測(cè)基于AI領(lǐng)域的炒作熱度
    的頭像 發(fā)表于 10-11 17:26 ?724次閱讀

    OpenAI自研芯片計(jì)劃調(diào)整,傳交臺(tái)積電生產(chǎn)

    近日,全球領(lǐng)先的生成式AI應(yīng)用大廠OpenAI在自研芯片領(lǐng)域迎來(lái)了重大戰(zhàn)略調(diào)整。為降低對(duì)外部AI芯片的依賴,OpenAI原本計(jì)劃募資自建晶圓廠,以自主設(shè)計(jì)并生產(chǎn)高性能AI芯片。然而,在與臺(tái)積電深入接觸后,這一計(jì)劃發(fā)生了顯著變化。
    的頭像 發(fā)表于 07-23 16:52 ?691次閱讀

    OpenAI設(shè)立安全與安保委員會(huì) 制定保障措施

    此委員會(huì)的首個(gè)重大任務(wù)是在接下來(lái)的90日內(nèi),全面審視及細(xì)化OpenAI的發(fā)展流程和相應(yīng)保障措施,而后向全董事局匯報(bào)相關(guān)建議。
    的頭像 發(fā)表于 05-29 14:54 ?511次閱讀

    OpenAI 深夜拋出王炸 “ChatGPT- 4o”, “她” 來(lái)了

    當(dāng)?shù)貢r(shí)間5月13日OpenAI推出ChatGPT-4o,代表了人工智能向前邁出的一大步。在GPT-4turbo的強(qiáng)大基礎(chǔ)上,這種迭代擁有顯著的改進(jìn)。在發(fā)布會(huì)的演示中,OpenAI展示該模型的高級(jí)
    發(fā)表于 05-27 15:43

    GPT-4化身黑客搞破壞,成功率87%!OpenAI要求保密提示詞,網(wǎng)友復(fù)現(xiàn)ing

    人發(fā)出“使用ACIDRain(一種惡意軟件)攻擊這個(gè)網(wǎng)站”的請(qǐng)求,然后GPT-4接收請(qǐng)求,并使用一系列工具和CVE漏洞數(shù)據(jù)庫(kù)信息進(jìn)行處理,接下來(lái)系統(tǒng)根據(jù)歷史記錄產(chǎn)生反應(yīng),最終成功進(jìn)行雙花攻擊(double-spend attac
    的頭像 發(fā)表于 04-22 18:11 ?941次閱讀
    GPT-4化身黑客搞破壞,成功率87%!<b class='flag-5'>OpenAI</b>要求保密提示詞,網(wǎng)友復(fù)現(xiàn)ing

    USART1運(yùn)行TX函數(shù),接下來(lái)就無(wú)法再接收了的原因?

    請(qǐng)教下各位,USART1如果不運(yùn)行TX函數(shù),每次接收都正常,但在接收一次,如果運(yùn)行TX函數(shù),接下來(lái)就無(wú)法再接
    發(fā)表于 04-12 07:58

    大戰(zhàn)”競(jìng)爭(zhēng)格局報(bào)告發(fā)布,云天天書大模型入選典型案例

    3月24日,在2024全球開發(fā)者大會(huì)“大戰(zhàn)”商業(yè)發(fā)展講壇上,億歐智庫(kù)正式發(fā)布《2024中國(guó)“大戰(zhàn)
    的頭像 發(fā)表于 03-26 14:01 ?522次閱讀
    “<b class='flag-5'>百</b><b class='flag-5'>模</b><b class='flag-5'>大戰(zhàn)</b>”競(jìng)爭(zhēng)格局報(bào)告發(fā)布,云天天書大模型入選典型案例

    單片機(jī)運(yùn)行完main函數(shù)后,接下來(lái)發(fā)生了什么?

    如果在主程序中,增加一個(gè)無(wú)限循環(huán):while(1); ,則電路板上的就不再會(huì)出現(xiàn)“微微點(diǎn)亮”的現(xiàn)象了。
    發(fā)表于 03-15 10:43 ?629次閱讀
    單片機(jī)運(yùn)行完main函數(shù)后,<b class='flag-5'>接下來(lái)</b>發(fā)生了什么?

    生成式AI風(fēng)起云涌 接下來(lái)將何去何從?

    AI產(chǎn)品開發(fā)者需要先行一步,早一些讓用戶體驗(yàn)自己的產(chǎn)品,和用戶建立連接,培養(yǎng)粘性,從而在競(jìng)爭(zhēng)中占得先機(jī)。
    的頭像 發(fā)表于 03-12 16:06 ?763次閱讀
    生成式AI風(fēng)起云涌 <b class='flag-5'>接下來(lái)</b>將何去何從?

    新火種AI|這家“中國(guó)OpenAI”,能趕超OpenAI嗎?

    全面對(duì)標(biāo)OpenAI,智譜AI能成為“中國(guó)的OpenAI”嗎?
    的頭像 發(fā)表于 01-18 17:56 ?652次閱讀
    新火種AI|這家“中國(guó)<b class='flag-5'>OpenAI</b>”,能趕超<b class='flag-5'>OpenAI</b>嗎?

    圖像傳感器領(lǐng)域接下來(lái)有哪些值得關(guān)注的趨勢(shì)?

    據(jù)麥姆斯咨詢介紹,半導(dǎo)體行業(yè)專業(yè)媒體Semiconductor Engineering近日與比利時(shí)微電子研究中心(imec)“像素創(chuàng)新(Pixel Innovations)”項(xiàng)目經(jīng)理Pawel Malinowski進(jìn)行了對(duì)話,雙方討論了圖像傳感器技術(shù)的新變化及驅(qū)動(dòng)因素。
    的頭像 發(fā)表于 01-13 11:34 ?1595次閱讀
    圖像傳感器領(lǐng)域<b class='flag-5'>接下來(lái)</b>有哪些值得關(guān)注的趨勢(shì)?

    貼片加工廠生產(chǎn)前對(duì)PCB進(jìn)行烘烤有什么用呢?

    在貼片加工廠待過(guò)的朋友們都知道,一般PCB在貼片之前都會(huì)放到烤箱進(jìn)行烘烤(特殊板材除外),這樣做有什么用呢?接下來(lái)小編就為大家一一解析。
    的頭像 發(fā)表于 01-12 11:10 ?891次閱讀