1. Ramer-Douglas-Peucker
Ramer-Douglas-Peucker,又稱拉默-道格拉斯-普克算法
道格拉斯算法是一種直線簡(jiǎn)化算法,可以在保持曲線形狀的同時(shí)減少曲線中的點(diǎn)數(shù)。
它的工作原理是遞歸地將曲線劃分為更小的線段,并用一條線近似每個(gè)線段。然后,該算法檢查原始曲線和近似直線之間的距離。
如果距離大于指定的公差,則算法會(huì)細(xì)分線段并重復(fù)該過程。如果距離小于公差,則算法會(huì)刪除中間點(diǎn),然后移動(dòng)到下一個(gè)線段。
關(guān)于道格拉斯算法的具體實(shí)現(xiàn)過程,不在此贅述。來一版可以直接使用的C++代碼,里面使用了遞歸。
// Define a function to calculate the distance between two points
float distance(cv::Point2f p1, cv::Point2f p2) {
return std::sqrt(std::pow(p2.x - p1.x, 2) + std::pow(p2.y - p1.y, 2));
}
// Define a function to find the point with the maximum distance from a line segment
cv::Point2f find_furthest_point(std::vector< cv::Point2f > points, cv::Point2f p1, cv::Point2f p2) {
float max_distance = 0;
cv::Point2f furthest_point;
for (auto point : points) {
float current_distance = std::fabs((point.y - p1.y) * (p2.x - p1.x) - (point.x - p1.x) * (p2.y - p1.y)) / distance(p1, p2);
if (current_distance > max_distance) {
max_distance = current_distance;
furthest_point = point;
}
}
return furthest_point;
}
// Define the Douglas-Peucker algorithm function
void douglas_peucker(std::vector< cv::Point2f > points, float epsilon, std::vector< cv::Point2f >& simplified_points) {
// Find the point with the maximum distance from the line segment
float max_distance = 0;
int furthest_index;
cv::Point2f p1 = points[0];
cv::Point2f p2 = points.back();
for (int i = 1; i < points.size(); i++) {
float current_distance = std::fabs((points[i].y - p1.y) * (p2.x - p1.x) - (points[i].x - p1.x) * (p2.y - p1.y)) / distance(p1, p2);
if (current_distance > max_distance) {
max_distance = current_distance;
furthest_index = i;
}
}
// If the maximum distance is greater than epsilon, recursively simplify the two sub-lines
if (max_distance > epsilon) {
std::vector< cv::Point2f > left_points(points.begin(), points.begin() + furthest_index + 1);
std::vector< cv::Point2f > right_points(points.begin() + furthest_index, points.end());
std::vector< cv::Point2f > left_simplified_points;
std::vector< cv::Point2f > right_simplified_points;
douglas_peucker(left_points, epsilon, left_simplified_points);
// Recursively simplify the right sub-line
douglas_peucker(right_points, epsilon, right_simplified_points);
// Combine the simplified sub-lines
simplified_points.insert(simplified_points.end(), left_simplified_points.begin(), left_simplified_points.end());
simplified_points.insert(simplified_points.end(), right_simplified_points.begin() + 1, right_simplified_points.end());
}
// If the maximum distance is less than or equal to epsilon, add the endpoints to the simplified points
else {
simplified_points.push_back(points.front());
simplified_points.push_back(points.back());
}
}
2. 道格拉斯算法的特點(diǎn)
道格拉斯算法,存在它的優(yōu)勢(shì)與劣勢(shì)
優(yōu)勢(shì):
該算法的實(shí)現(xiàn)和理解相對(duì)簡(jiǎn)單。
它可以用于簡(jiǎn)化任何類型的曲線,而不僅僅是直線或多段線。
通過調(diào)整公差參數(shù),可以使用它來保留曲線的重要特征,例如拐角或拐點(diǎn)。
缺點(diǎn):
對(duì)于大型數(shù)據(jù)集或復(fù)雜曲線,該算法耗時(shí)久。
所得到的簡(jiǎn)化曲線可能在視覺上不令人滿意或不平滑,尤其是在公差參數(shù)設(shè)置過高的情況下。
該算法不適用于具有不同密度或曲率的曲線,因?yàn)樗僭O(shè)點(diǎn)的均勻分布。
因此在實(shí)際使用中,針對(duì)實(shí)際出現(xiàn)的問題,我們需要對(duì)該算法進(jìn)行對(duì)應(yīng)的優(yōu)化。我在工程中已經(jīng)出現(xiàn)了不平滑的問題,關(guān)于優(yōu)化以后再說。
-
代碼
+關(guān)注
關(guān)注
30文章
4809瀏覽量
68818 -
自動(dòng)駕駛
+關(guān)注
關(guān)注
784文章
13899瀏覽量
166703
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論