一、熱阻的定義及熱阻網(wǎng)絡(luò)模型
熱量傳遞有三種形式,熱傳導(dǎo),熱對(duì)流和熱輻射,芯片在Package內(nèi)的熱量傳遞主要是以熱傳導(dǎo)為主。
圖1
以圖1的QFN模型為例,IC中的die作為熱源,上面有芯片最高溫度結(jié)溫TJ, 產(chǎn)生的熱量傳導(dǎo)至直接和die接觸的case top 和PCB board,之后再?gòu)腸ase top, PCB board 以熱交換,熱輻射形式傳播至空氣;
因此QFN對(duì)應(yīng)的熱阻模型可以簡(jiǎn)化成一個(gè)2R網(wǎng)絡(luò),四個(gè)熱阻值,分別是θJC, θCA, θJB, θBA. 如圖2;
圖2
這里有兩個(gè)細(xì)節(jié):
1.熱阻θ的定義是兩點(diǎn)之間的溫度差除以對(duì)應(yīng)流經(jīng)這兩點(diǎn)的功率,是一個(gè)有實(shí)際意義的物理量,θJC,θJB, 通常是由芯片封裝決定的,無(wú)法改變;θCA, θBA通常是由芯片外圍空間大小,空氣對(duì)流情況,有無(wú)散熱器,以及PCB layout 決定;
2. 在正常應(yīng)用中,即芯片在PCB上自然對(duì)流情況下,芯片95%以上的熱量都是通過PCB板走,即向下傳導(dǎo)的功率占總功率的95%以上;
二、熱阻的應(yīng)用
如圖2,根據(jù)公式
因此
其中case的溫度往往可以通過熱電偶或者紅外方便測(cè)出來(lái),那么知道了結(jié)到殼的熱阻θJC是否就能直接算出芯片Junction的溫度呢?
答案是no,這里有個(gè)問題,根據(jù)熱阻的定義,應(yīng)用θJC算結(jié)溫,乘的功率必須是流經(jīng)case top 方向的功率,但是我們實(shí)際應(yīng)用中無(wú)法定量得測(cè)出有多少功率從case top 走,又有多少的功率從PCB board走,我們只是定性得知道有95%的功率都是往PCB走;因此我們引入一個(gè)概念熱特征參數(shù)ψ,熱特征參數(shù)ψ的定義是兩點(diǎn)之間的溫度差除以總功率;買元器件現(xiàn)貨上唯樣商城!
根據(jù)公式
得出
因此我們可以很方便地通過ψJT估算芯片的結(jié)溫。
總結(jié)一下:
1.熱阻θ是兩點(diǎn)之間的溫度差除以對(duì)應(yīng)流經(jīng)這兩點(diǎn)的功率;
熱阻θJA, θJC是用來(lái)評(píng)估不同芯片的thermal performance,而不是計(jì)算結(jié)溫。不同芯片熱阻的是通過統(tǒng)一的JESD51標(biāo)準(zhǔn)測(cè)得,方便一些系統(tǒng)級(jí)的工程師,在做系統(tǒng)級(jí)設(shè)計(jì)時(shí),進(jìn)行芯片之間的橫向比較;
2.熱特征參數(shù)ψ是兩點(diǎn)之間的溫度差除以總功率;
熱特征參數(shù)ψJT的計(jì)算更接近于實(shí)際應(yīng)用條件,因此計(jì)算芯片結(jié)溫往往是通過數(shù)ψJT;
三、熱阻的測(cè)試與計(jì)算
圖3
根據(jù)熱阻計(jì)算公式:
計(jì)算熱阻需要三個(gè)值,TJ,TA,PJA; 如圖3芯片數(shù)據(jù)手冊(cè)中提供的熱阻值往往是通過JESD51標(biāo)準(zhǔn)下進(jìn)行測(cè)量,下面簡(jiǎn)單介紹一下TJ,TA,PJA在JESD51熱測(cè)試標(biāo)準(zhǔn)下的測(cè)試方法。
(1).芯片結(jié)溫TJ
圖4
圖5
JESD51-1規(guī)定芯片結(jié)溫的測(cè)試方法—用電壓測(cè)溫度,如圖4,圖5;
①測(cè)K系數(shù):芯片中的MOSFET有寄生的體二極管body diode, 其壓降和溫度是強(qiáng)相關(guān)的。我們先選一個(gè)bode diode,通一個(gè)很小的bias 電流,大概200uA~10mA,把芯片放置恒溫箱內(nèi),不斷改變溫度,記錄不同溫度對(duì)應(yīng)的電壓值。幾組數(shù)據(jù)下來(lái),能夠繪制出一條電壓vs.溫度的曲線,曲線幾乎是線性,其斜率即為K系數(shù),也叫K因子。如下圖6.
圖6
②灌功率算結(jié)溫;給芯片灌大電流,讓其發(fā)熱,對(duì)應(yīng)body diode電壓值也會(huì)隨之變化,帶入①曲線公式中,即可算出對(duì)應(yīng)的結(jié)溫;
圖4,圖5是兩種測(cè)試方法,他們區(qū)別在于:圖4測(cè)溫度和灌功率,即bias小電流和功率大電流用的是同一個(gè)diode;
圖5,測(cè)溫度和灌功率分別用不同的diode。我們實(shí)際應(yīng)用中,芯片在發(fā)熱時(shí),die上會(huì)有很大溫度梯度,如果用不同位置的diode, 不管測(cè)溫度的diode離灌功率的diode有多近,都會(huì)存在一定的溫度分布差,造成測(cè)試結(jié)果偏小。
以MPQ6612A為例,(MPQ6612是一顆QFN3*4的全橋驅(qū)動(dòng))
下圖7是持續(xù)給MPQ6612AOUT1 LS 灌3.3W的功率,1000s后芯片的熱成像圖。P0是OUT1 LS diode的位置,即芯片最高結(jié)溫的位置,如果另外選取其他位置如P5-OUT2 LS diode測(cè)溫度作為結(jié)溫,就會(huì)存在高達(dá)~30°C的測(cè)試誤差。
圖7
圖4是目前的主流方法,也是精度最高的,即用同一個(gè)管子完成測(cè)溫度和灌功率。
以MPQ6612A為例,圖8:
圖8
選取任意一個(gè)diode,先通bias小電流即Isense,測(cè)出K系數(shù)。之后通大電流灌功率即Idrive, 灌完功率后,迅速把電流切回Isense, 測(cè)出diode電壓,根據(jù)K系數(shù)和diode電壓可以測(cè)出一條降溫曲線,在軟件上對(duì)降溫曲線進(jìn)行反向擬合,校正切換瞬間噪聲,可以得出灌完功率那一刻的溫度值,即芯片最高結(jié)溫。
選取同一個(gè)管子的測(cè)試結(jié)果精度雖高,但是對(duì)實(shí)驗(yàn)要求也很高。必須要讓電流切換瞬間非???,所以熱阻測(cè)試有專門的測(cè)試儀器T3ster,它的量測(cè)時(shí)間短至1us,即灌完功率后1us的時(shí)間,傳感器就能讀到小電流下的電壓值。
除了這兩種方法測(cè)結(jié)溫,還有比較常規(guī)的OTP法,很多芯片都有thermal sensor的單元,我們可以通過觸發(fā)OTP的threshold來(lái)作為結(jié)溫測(cè)試熱阻,但是這個(gè)方法和用不同管子電壓值測(cè)溫度一樣,在die里面thermal sensor 和灌功率單位的位置也是有溫度分布差的,因此會(huì)有很大的誤差。
(2).芯片環(huán)境溫度TA
JESD51同時(shí)也規(guī)定了芯片測(cè)試環(huán)境等一系列要求,如圖9,空氣是自然對(duì)流還是強(qiáng)制對(duì)流,測(cè)試板的layout,2s2p還是1s0p等等。大致了解下即可。
圖9
(3).芯片功率方向的唯一性
上面講到,兩點(diǎn)之間的熱阻是對(duì)應(yīng)兩點(diǎn)之間的功率,因此我們?cè)跍y(cè)試不同熱阻時(shí),需要保證芯片功率方向唯一性,以下圖10 θJC為例。
圖10
芯片正常應(yīng)用中是有上下兩個(gè)散熱方向即junction to case(top), junction to board。如果要測(cè)試θJC,需要保證芯片全部功耗往case top方向走,可以通過對(duì)其他散熱方向進(jìn)行絕熱處理。實(shí)驗(yàn)中可以讓芯片四周和底部用絕熱泡沫夾住,頂部用冷水板保持恒溫。仿真可以直接在case top 設(shè)置一個(gè)溫度點(diǎn),譬如接地。
解決了JESD51標(biāo)準(zhǔn)下TJ,TA,功率方向唯一性的測(cè)試方法后,我們來(lái)看一下MPQ6612A熱仿真測(cè)試結(jié)果。
圖11
上圖11是MPQ6612A基于JESD51標(biāo)準(zhǔn)的熱阻仿真結(jié)果。其中值得一提的是,θJB測(cè)試中,能看到芯片pin走線是非常寬的,遠(yuǎn)大于正常應(yīng)用,這是因?yàn)闊嶙铚y(cè)試的標(biāo)準(zhǔn)是JESD51,它往往模擬的是PCB layout 很差的情況。因此我們?cè)谡?yīng)用中,標(biāo)準(zhǔn)EVB上測(cè)試的熱阻值或者是熱特征參數(shù)要比JESD51標(biāo)準(zhǔn)下好很多。
四、瞬態(tài)熱阻-熱阻抗
現(xiàn)在很多芯片在啟停的時(shí)候,會(huì)有比較大的電流沖擊,瞬態(tài)的功率可能是穩(wěn)態(tài)功率的幾十倍,因此瞬態(tài)結(jié)溫的高低是越來(lái)越多客戶關(guān)心的問題。前面提到的熱阻模型都是基于穩(wěn)態(tài)下,那么研究瞬態(tài),該構(gòu)建怎么樣的散熱模型呢?
瞬態(tài)熱阻,即熱阻抗Zth。如圖12,熱阻抗是熱阻值隨功率pulse脈寬變化的函數(shù),當(dāng)時(shí)間足夠長(zhǎng)時(shí),系統(tǒng)達(dá)到穩(wěn)態(tài),這時(shí)候的熱阻抗就等于熱阻。
圖12
那么如何測(cè)試瞬態(tài)熱阻抗?即瞬態(tài)功率下對(duì)應(yīng)的結(jié)溫呢?
我們來(lái)看一下基于MPQ6612A的瞬態(tài)熱阻抗測(cè)試方法和結(jié)果。
思路和前面測(cè)穩(wěn)態(tài)時(shí)一樣,選取一個(gè)管子測(cè)溫度和灌功率,但是我們可以通過改變power pulse 的脈寬,測(cè)出一個(gè)不同power pulse 脈寬下對(duì)應(yīng)的結(jié)溫,進(jìn)而得出對(duì)應(yīng)的熱阻,繪制曲線即為熱阻抗。
圖13
圖13是MPQ6612在標(biāo)準(zhǔn)EVB上用T3ster的熱阻抗測(cè)試結(jié)果。橫坐標(biāo)是power pulse的脈寬,縱坐標(biāo)是對(duì)應(yīng)的瞬態(tài)結(jié)到環(huán)境溫度的熱阻Zth。
從圖中,不難發(fā)現(xiàn)這里有兩個(gè)有趣的現(xiàn)象:
1. 脈寬達(dá)到1000s以后,熱阻抗幾乎不變,即系統(tǒng)達(dá)到穩(wěn)態(tài),這時(shí)候熱阻抗等于穩(wěn)態(tài)熱阻, 即~30°C/W ,比前面熱仿真RθJA熱阻值44°C/W 要小很多,這是因?yàn)?0°C/W 是基于標(biāo)準(zhǔn)EVB的測(cè)試結(jié)果,而44°C/W 是基于JESD51標(biāo)準(zhǔn)的測(cè)試結(jié)果,JESD51 測(cè)試板往往模擬的是PCB布局很差的情況。
2. 熱阻抗曲線,有明顯兩個(gè)拐點(diǎn),分別是1s,100s。這是因?yàn)?s以前芯片熱量還沒有傳遞至package表面,熱量還在內(nèi)部,所以對(duì)應(yīng)1s以前的熱阻抗就非常低。而100s大概是芯片熱量均勻傳遞至PCB的時(shí)間點(diǎn)。0-1s是Package level, 1s-100s是PCB level, 100s-1000s 是system level即穩(wěn)態(tài)。
五、PCB Layout Tips
前面提到正常應(yīng)用中,芯片95%的熱都是通過PCB散熱,因此PCB合理的layout能夠更好地提高芯片的thermal performance。下面是幾個(gè)tips。
圖14MPQ6612A: 4-Layer Evaluation Board
1. 走大功率的環(huán)路布銅面積要大,布銅率要高。
2. 對(duì)散熱有更高要求可以用四層板。
3. 選PCB基板的時(shí)候,盡可能多用銅箔,少用FR4
4.靠近IC或者是功率走線,多打過孔,一個(gè)常規(guī)尺寸的過孔熱阻值也有100°C/W。
審核編輯 黃宇
-
芯片
+關(guān)注
關(guān)注
456文章
51087瀏覽量
425909 -
IC
+關(guān)注
關(guān)注
36文章
5975瀏覽量
175940 -
熱阻
+關(guān)注
關(guān)注
1文章
108瀏覽量
16483
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論