0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

關于氮化鎵的干蝕刻綜述

jf_01960162 ? 來源:jf_01960162 ? 作者:jf_01960162 ? 2023-10-07 15:43 ? 次閱讀

引言

GaN及相關合金可用于制造藍色/綠色/紫外線發(fā)射器以及高溫、高功率電子器件。由于 III 族氮化物的濕法化學蝕刻結果有限,因此人們投入了大量精力來開發(fā)干法蝕刻工藝。干法蝕刻開發(fā)一開始集中于臺面結構,其中需要高蝕刻速率、各向異性輪廓、光滑側壁和不同材料的同等蝕刻。

然而,隨著對高功率、高溫電子器件的興趣增加,蝕刻要求擴大到包括光滑的表面形態(tài)、低等離子體引起的損傷以及發(fā)生一層或另一層的選擇性蝕刻。與其他化合物半導體相比,III 族氮化物的惰性化學性質和強鍵能使干法蝕刻開發(fā)變得更加復雜。

反應離子蝕刻

RIE利用蝕刻機制的化學和物理成分來實現(xiàn)各向異性輪廓、快速蝕刻速率和尺寸控制。RIE等離子體通常通過在反應氣體中的兩個平行電極之間施加13.56 MHz的射頻(rf)功率來產生(圖1)。將基板放置在通電電極上,在電極上感應出電勢,離子能量(定義為穿過等離子體鞘層)通常為幾百eV。RIE在低壓下運行,范圍從幾mTorr到200mTorr,由于平均自由程增加和鞘層加速期間離子的碰撞散射減少,因此促進了各向異性蝕刻。

wKgaomUhBWuASh-kAACGW1oNXy4359.png

圖1:蝕刻平臺的示意圖

蝕刻速率隨著直流偏壓的增加而增加,在-400V時蝕刻速率>500 ?/min。在150℃的BCl3中蝕刻速率為1050?/min。III族氮化物的較佳RIE結果是在高離子能量條件下的氯基等離子體中獲得的,其中 III-N 鍵斷裂和蝕刻產物從表面的濺射解吸是有效的。在這些條件下,可能會發(fā)生等離子體損傷并降低電氣光學器件的性能。降低離子能量或增加等離子體中的化學活性以較大程度地減少損壞通常會導致蝕刻速率變慢或各向異性輪廓變小,從而顯著限制關鍵尺寸。因此,有必要尋求將高質量蝕刻特性與低損傷結合起來的替代蝕刻平臺。

高密度等離子體

與 RIE 相比,使用包括電子回旋共振 (ECR)、電感耦合等離子體 (ICP) 和磁控管 RIE (MRIE) 在內的高密度等離子體蝕刻系統(tǒng),改善了 III 族氮化物的蝕刻特性。這一觀察結果歸因于等離子體密度比 RIE 高 2 至 4 個數(shù)量級,從而提高了 III-N 鍵斷裂效率和表面上形成的蝕刻產物的濺射解吸。此外,由于與 RIE 相比,離子能量和離子密度可以更有效地解耦,因此更容易控制等離子體引起的損傷。隨著射頻偏置的增加,表面損壞的可能性也會增加。圖2顯示了典型高密度等離子體反應器中等離子體參數(shù)和樣品位置的示意圖。

wKgaomUhCuuAU44wAAB4lbYud0U320.png

圖2:高密度等離子刻蝕工藝示意圖

化學輔助離子束蝕刻

化學輔助離子束蝕刻(CAIBE)和反應離子束蝕刻(RIBE)也已用于蝕刻III族氮化物薄膜,在這些過程中,離子在高密度等離子體源中產生,并通過一個或多個柵極加速到基板。在CAIBE中,反應氣體被添加到加速柵極下游的等離子體中,從而增強蝕刻機制的化學成分,而在RIBE中,反應氣體被引入離子源中。兩種蝕刻平臺都依賴相對高能的離子(200-2000eV)和低腔室壓力(<5mTorr)來實現(xiàn)各向異性蝕刻輪廓。

反應離子束蝕刻

GaN、AlN和InN的RIBE去除率如圖3所示,是在400eV和100mA電流下Cl2/Ar束中Cl2百分比的函數(shù)。去除率的趨勢基本上遵循這些材料的鍵能。在固定的Cl2/Ar比率下,速率隨束流能量的增加而增加。在非常高的電壓下,由于在反應形成氯化物蝕刻產物之前活性氯從氮化物樣品表面的離子輔助解吸,速率會飽和甚至降低。蝕刻輪廓是各向異性的,在特征的底部有輕微的溝槽。這通常歸因于側壁的離子偏轉導致蝕刻特征底部的離子通量增加。

wKgZomUhCv-AAy9kAABe29TAnEk015.png

圖3:RIBE 氮化物去除率與Cl2 /Ar束中Cl2百分比的函數(shù)關系

江蘇英思特半導體科技有限公司主要從事濕法制程設備,晶圓清潔設備,RCA清洗機,KOH腐殖清洗機等設備的設計、生產和維護。

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 半導體
    +關注

    關注

    334

    文章

    27578

    瀏覽量

    220527
  • 晶圓
    +關注

    關注

    52

    文章

    4947

    瀏覽量

    128142
  • 氮化鎵
    +關注

    關注

    59

    文章

    1642

    瀏覽量

    116478
  • 蝕刻
    +關注

    關注

    9

    文章

    415

    瀏覽量

    15464
收藏 人收藏

    評論

    相關推薦

    氮化充電器和普通充電器有啥區(qū)別?

    相信最近關心手機行業(yè)的朋友們都有注意到“氮化(GaN)”,這個名詞在近期出現(xiàn)比較頻繁。特別是隨著小米發(fā)布旗下首款65W氮化快充充電器之后,“氮化
    發(fā)表于 01-15 16:41

    英諾賽科香港上市,國內氮化半導體第一股誕生

    近日,國內氮化功率半導體領域的佼佼者——英諾賽科(蘇州)科技股份有限公司,在香港聯(lián)合交易所主板成功掛牌上市。此舉標志著國內氮化半導體第一股正式誕生,為行業(yè)樹立了新的里程碑。 英諾賽
    的頭像 發(fā)表于 01-02 14:36 ?187次閱讀

    25W氮化電源芯片U8722BAS的主要特征

    在消費類快充電源市場中,氮化有著廣泛的應用,如今已有數(shù)十家主流電源廠商開辟了氮化快充產品線,推出的氮化
    的頭像 發(fā)表于 12-24 16:06 ?336次閱讀

    氮化晶圓在劃切過程中如何避免崩邊

    9月,英飛凌宣布成功開發(fā)出全球首款12英寸(300mm)功率氮化(GaN)晶圓。12英寸晶圓與8英寸晶圓相比,每片能多生產2.3倍數(shù)量的芯片,技術和效率顯著提升。這一突破將極大地推動氮化
    的頭像 發(fā)表于 10-25 11:25 ?796次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>晶圓在劃切過程中如何避免崩邊

    碳化硅 (SiC) 與氮化 (GaN)應用 | 氮化硼高導熱絕緣片

    SiC和GaN被稱為“寬帶隙半導體”(WBG)。由于使用的生產工藝,WBG設備顯示出以下優(yōu)點:1.寬帶隙半導體氮化(GaN)和碳化硅(SiC)在帶隙和擊穿場方面相對相似。氮化的帶隙
    的頭像 發(fā)表于 09-16 08:02 ?778次閱讀
    碳化硅 (SiC) 與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b> (GaN)應用  | <b class='flag-5'>氮化</b>硼高導熱絕緣片

    分立器件在45W氮化快充產品中的應用

    如今,以碳化硅、氮化等為代表的第三代半導體新材料得到廣泛應用,它們具有更高的導熱率和抗輻射能力,以及更大的電子飽和漂移速率等特點。氮化熱穩(wěn)定性好、飽和電流密度高、耐壓能力強大,
    的頭像 發(fā)表于 09-12 11:21 ?483次閱讀
    分立器件在45W<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充產品中的應用

    氮化和砷化哪個先進

    氮化(GaN)和砷化(GaAs)都是半導體材料領域的重要成員,它們在各自的應用領域中都展現(xiàn)出了卓越的性能。然而,要判斷哪個更先進,并不是一個簡單的二元對立問題,因為它們的先進性取決于具體的應用場
    的頭像 發(fā)表于 09-02 11:37 ?2972次閱讀

    氮化和碳化硅哪個有優(yōu)勢

    氮化(GaN)和碳化硅(SiC)都是當前半導體材料領域的佼佼者,它們各自具有獨特的優(yōu)勢,應用領域也有所不同。以下是對兩者優(yōu)勢的比較: 氮化(GaN)的優(yōu)勢 高頻應用性能優(yōu)越 :
    的頭像 發(fā)表于 09-02 11:26 ?1818次閱讀

    芯干線科技CEO說氮化

    氮化是一種由氮和結合而來的化合物,其中氮在元素周期表排序第7位,排序第31位,7月31日世界氮化
    的頭像 發(fā)表于 08-21 10:03 ?643次閱讀

    氮化(GaN)的最新技術進展

    本文要點氮化是一種晶體半導體,能夠承受更高的電壓。氮化器件的開關速度更快、熱導率更高、導通電阻更低且擊穿強度更高。氮化
    的頭像 發(fā)表于 07-06 08:13 ?979次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>(GaN)的最新技術進展

    淺談光耦與氮化快充技術的創(chuàng)新融合

    氮化快充技術主要通過將氮化功率器件應用于充電器、電源適配器等充電設備中,以提高充電效率和充電速度。光耦技術作為一種能夠將電信號轉換成光信號并實現(xiàn)電氣與光學之間隔離的器件,為
    的頭像 發(fā)表于 06-26 11:15 ?447次閱讀
    淺談光耦與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充技術的創(chuàng)新融合

    納微半導體下一代GaNFast氮化功率芯片助力聯(lián)想打造全新氮化快充

    加利福尼亞州托倫斯2024年6月20日訊 — 唯一全面專注的下一代功率半導體公司及氮化和碳化硅功率芯片行業(yè)領導者——納微半導體(納斯達克股票代碼:NVTS)近日宣布其GaNFast氮化
    的頭像 發(fā)表于 06-21 14:45 ?1555次閱讀

    Transphorm攜手偉詮電子推出兩款新型系統(tǒng)級封裝氮化器件

    全球氮化功率半導體行業(yè)的領軍者Transphorm, Inc.和USB PD控制器集成電路的佼佼者偉詮電子聯(lián)合宣布,雙方已成功推出兩款新型系統(tǒng)級封裝氮化器件(SiP)。這兩款新品與
    的頭像 發(fā)表于 05-23 11:20 ?668次閱讀

    關于兩種蝕刻方式介紹

    蝕刻是為對光阻上的圖案忠實地進行高精密加工的過程,故選擇材料層與光阻層的蝕刻速率差(選擇比)較大、且能夠確保蝕刻的非等向性(主要隨材料層的厚度方向進行
    的頭像 發(fā)表于 04-18 11:39 ?723次閱讀
    <b class='flag-5'>關于</b>兩種<b class='flag-5'>蝕刻</b>方式介紹

    AI的盡頭或是氮化?2024年多家廠商氮化產品亮相,1200V高壓沖進市場

    電子發(fā)燒友網(wǎng)報道(文/劉靜)氮化是最新的第三代半導體材料,最早是在1932年由W.C.Johnson等人首次合成,2019年開啟在快充領域大規(guī)模商用。經(jīng)過五六年的培育,氮化的應用領
    的頭像 發(fā)表于 03-28 09:06 ?3120次閱讀
    AI的盡頭或是<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>?2024年多家廠商<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>產品亮相,1200V高壓沖進市場