首先,想說上拉電阻幾乎都是應(yīng)運(yùn)三極管電路而生的,但是本文基本上都屬于定性的分析,避免對其定量分析,相信即使沒有學(xué)過三極管晶體電路的同學(xué)還是可以基本理解的。
首先還要明確一個(gè)術(shù)語,所謂開漏(OD),開集(OC)電路就
是場效應(yīng)管的漏極和三極管的集電極是斷開的電路。如下圖所示,這里希望大家不要糾結(jié)于我這個(gè)三極管用的是否正確只是想定性的解釋一下什么是開漏(OD)或開集(OC)。
下面通過場效應(yīng)管的漏極開路門電路的例子簡單說明一下上拉電阻:
注:管子導(dǎo)通或截止可以理解為單片機(jī)的軟件對端口置1或0.
(1)如果沒有上拉電阻(10k),將5V電源直接與場效應(yīng)管相連。
當(dāng)管子導(dǎo)通時(shí),管子等效一電阻,大小為1k左右,因此5v電壓全部加在此等效電阻上,輸出端Vout=5v。
當(dāng)管子截止時(shí),管子等效電阻很高,可以理解為無窮大,因此5v的電壓也全部加在此等效電阻上,Vout=5v。在這兩種情況下,輸出都為高電平,沒有低電平。
(2)如果有上拉電阻(10k),將5v電源通過此上拉電阻與與場效應(yīng)管相連。
當(dāng)管子導(dǎo)通時(shí),管子等效一電阻,大小為1k左右,與上拉電阻串聯(lián),輸出端電壓為加在此等效電阻上的電壓,其大小為Vout = 5v *管子等效電阻/(上拉電阻+管子等效電阻)=5v * 1/(10+1)=低電平。
當(dāng)管子截止時(shí),管子等效電阻很高,可以理解為無窮大,其與上拉電阻串聯(lián),輸出端電壓為加在此等效電阻上的電壓,其大小為Vout = 5v *管子等效電阻/(上拉電阻+管子等效電阻)=5v*無窮大/(無窮大+1)=高電平。
看到這里估計(jì)大家基本懂了七八分了吧,但是想必大家肯定還有一個(gè)疑問:難道P0口的高低電平輸出與實(shí)際的輸出是相反的嗎?呵呵,現(xiàn)在讓我們看一下8051單片機(jī)P0口的邏輯電路圖:
其實(shí),筆者一開始也糾結(jié)了很久,還專門查了一下場效應(yīng)管的書,但是沒有任何收獲。這里請大家認(rèn)真看一看P0.x 的D鎖存器的輸出端吧。沒錯(cuò)問題就在這里D鎖存器最終輸出的是,根據(jù)D鎖存器的原理,輸出在這里經(jīng)過了一次取反才又輸出的,所以其本質(zhì)是經(jīng)過了兩次取反才得到最終的外部輸出的。不知這里跟大家講清楚了沒有。
現(xiàn)在讓我們再來總結(jié)一下上拉下拉電阻的作用:
1) 上拉就是將不確定的信號通過一個(gè)電阻嵌位在高電平!電阻同時(shí)起限流作用!下拉同理,下拉就是將不確定的信號通過一個(gè)電阻嵌位在低電平!電阻同時(shí)起限流作用!
2) 上拉是對器件注入電流,下拉是輸出電流。
3) 弱強(qiáng)只是上拉電阻的阻值不同,沒有什么嚴(yán)格區(qū)分。
4) 對于非集電極(或漏極)開路輸出型電路(如普通門電路)提升電流和電壓的能力是有限的,上拉電阻的功能主要是為集電極開路輸出型電路輸出電流通道。
5) 一般作單鍵觸發(fā)使用時(shí),如果IC本身沒有內(nèi)接電阻,為了使單鍵維持在不被觸發(fā)的狀態(tài)或是觸發(fā)后回到原狀態(tài),必須在IC外部另接一電阻。
6) 數(shù)字電路有三種狀態(tài):高電平、低電平、和高阻狀態(tài),有些應(yīng)用場合不希望出現(xiàn)高阻狀態(tài),可以通過上拉電阻或下拉電阻的方式使處于穩(wěn)定狀態(tài),具體視設(shè)計(jì)要求而定!
7) 一般說的是I/O端口,有的可以設(shè)置,有的不可以設(shè)置,有的是內(nèi)置,有的是需要外接。
8) 上拉電阻是用來解決總線驅(qū)動能力不足時(shí)提供電流的。一般說法是拉電流,下拉電阻是用來吸收電流的,也就是我們通常所說的灌電流。
9) 在I/O引腳懸空時(shí),接電阻就是為了防止輸入端懸空,從而提高系統(tǒng)的抗干擾能力。減弱外部電流對芯片產(chǎn)生的干擾。
10) 通過上拉或下拉來增加或減小驅(qū)動電流。
11) 上下拉電阻改變電平的電位,常用在TTL-CMOS匹配。
12) 上拉電阻可以為OC門或者OD門提供電流。
三、上拉電阻的應(yīng)用場景
1) 當(dāng)TTL電路驅(qū)動COMS電路時(shí),若TTL電路輸出的高電平低于COMS電路的最低高電平(一般為3.5V),這時(shí)就需要在TTL的輸出端接上拉電阻,以提高輸出高電平值。注:此時(shí)上拉電阻連接的電壓值應(yīng)不低于CMOS電路的最低高電壓,同時(shí)又要考慮TTL電路方電流(如某端口最大輸入或輸出電流)的影響。
2) OC門或者OD門電路必須加上拉電阻,才能使用。
3) 為加大輸出引腳的驅(qū)動能力,有的單片機(jī)管腳上也常使用上拉電阻。
4) 在COMS芯片上,為了防止靜電造成損壞,不用的管腳不能懸空,一般接上拉電阻,降低輸入阻抗,提供泄荷通路。
5) 芯片的管腳加上拉電阻來提高輸出電平,從而提高芯片輸入信號的噪聲容限增強(qiáng)抗干擾能力。
6) 長線傳輸中電阻不匹配容易引起反射波干擾,加上下拉電阻是電阻匹配,有效的抑制反射波干擾。
7) 在數(shù)字電路中不用的輸入腳都要接固定電平,通過1k電阻接高電平或接地。
上拉電阻阻值選擇原則
1) 從節(jié)約功耗及芯片的灌電流能力考慮應(yīng)當(dāng)足夠大;電阻大,電流小。
2) 從確保足夠的驅(qū)動電流考慮應(yīng)當(dāng)足夠小;電阻小,電流大。
3) 對于高速電路,過大的上拉電阻可能邊沿變平緩。綜合考慮以上三點(diǎn),通常在1k到10k之間選取。對下拉電阻也有類似道理。
4) 對上拉電阻和下拉電阻的選擇應(yīng)結(jié)合開關(guān)管特性和下級電路的輸入特性進(jìn)行設(shè)定,主要需要考慮以下幾個(gè)因素:
a)驅(qū)動能力與功耗的平衡。以上拉電阻為例,一般地說,上拉電阻越小,驅(qū)動能力越強(qiáng),但功耗越大,設(shè)計(jì)時(shí)應(yīng)注意兩者之間的均衡。
b)下級電路的驅(qū)動需求。同樣以上拉電阻為例,當(dāng)輸出高電平時(shí),開關(guān)管斷開,上拉電阻應(yīng)適當(dāng)選擇以能夠向下級電路提供足夠的電流。
c)高低電平的設(shè)定。不同電路的高低電平的門檻電平會有不同,電阻應(yīng)適當(dāng)設(shè)定以確保能輸出正確的電平。以上拉電阻為例,當(dāng)輸出低電平時(shí),開關(guān)管導(dǎo)通,上拉電阻和開關(guān)管導(dǎo)通電阻分壓值應(yīng)確保在零電平門檻之下。
d)頻率特性。以上拉電阻為例,上拉電阻和開關(guān)管漏源級之間的電容和下級電路之間的輸入電容會形成RC延遲,電阻越大,延遲越大。上拉電阻的設(shè)定應(yīng)考慮電路在這方面的需求。
5) 關(guān)于電阻的參數(shù)不能一概而定,要看電路其他參數(shù)而定,比如通常用在輸入腳上的上拉電阻如果是為了抬高峰峰值,就要參考該引腳的內(nèi)阻來定電阻值的!
6) 一般LED的電流有幾個(gè)mA就夠了,最大不超過20mA,根據(jù)這個(gè)你就應(yīng)該可以算出上拉電阻值來了。
7) 對于驅(qū)動晶體管,又分為PNP和NPN管兩種情況:
a)對于NPN:毫無疑問NPN管是高電平有效的,因此上拉電阻的阻值用2K~20K之間的。具體的大小還要看晶體管的集電極接的是什么負(fù)載,對于LED類負(fù)載,由于發(fā)管電流很小,因此上拉電阻的阻值可以用20k的,但是對于管子的集電極為繼電器負(fù)載時(shí),由于集電極電流大,因此上拉電阻的阻值最好不要大于4.7K,有時(shí)候甚至用2K的。
b)對于PNP管:毫無疑問PNP管是低電平有效的,因此上拉電阻的阻值用100K以上的就行了,且管子的基極必須串接一個(gè)1~10K的電阻,阻值的大小要看管子集電極的負(fù)載是什么,對于LED類負(fù)載,由于發(fā)光電流很小,因此基極串接的電阻的阻值可以用20k的,但是對于管子的集電極為繼電器負(fù)載時(shí),由于集電極電流大,因此基極電阻的阻值最好不要大于4.7K。
8) 對于驅(qū)動TTL集成電路,上拉電阻的阻值要用1~10K之間的,有時(shí)候電阻太大的話是拉不起來的,因此用的阻值較小。但是對于CMOS集成電路,上拉電阻的阻值就可以用的很大,一般不小于20K,通常用100K的。
9) 關(guān)于I2C的上拉電阻:因?yàn)镮2C接口的輸出端是漏極開路或集電極開路,所以必須在接口外接上拉。上拉電阻的取值和I2C總線的頻率有關(guān),工作在standard mode時(shí),其典型值為10K。在FAST mode時(shí),為減少時(shí)鐘上升時(shí)間,滿足上升時(shí)間的要求,一般為1K。電阻的大小對時(shí)序有一定影響,對信號的上升時(shí)間和下降時(shí)間也有影響??傊话闱闆r下電壓在5V時(shí)選4.7K左右,3.3V在3.3K左右.這樣可加大驅(qū)動能力和加速邊沿的翻轉(zhuǎn)。
那么關(guān)于RS-485上下拉電阻如何選擇呢?
RS-485總線廣泛應(yīng)用于通信、工業(yè)自動化等領(lǐng)域,在實(shí)際應(yīng)用中,通常會遇到是否需要加上下拉電阻以及加多大的電阻合適的問題,下面我們將對這些問題進(jìn)行詳細(xì)的分析。
一、為什么需要加上下拉電阻?
1)當(dāng)485總線差分電壓大于+200mV時(shí),485收發(fā)器輸出高電平。
2)當(dāng)485總線差分電壓小于-200mV時(shí),485收發(fā)器輸出低電平。
3)當(dāng)485總線上的電壓在-200mV~+200mV時(shí),485收發(fā)器可能輸出高電平也可能輸出低電平。但一般總處于一種電平狀態(tài),若485收發(fā)器的輸出低電平,這對于UART通信來說是一個(gè)起始位,此時(shí)通信會不正常。
當(dāng)485總線處于開路(485收發(fā)器與總線斷開)或者空閑狀態(tài)(485收發(fā)器全部處于接收狀態(tài),總線沒有收發(fā)器進(jìn)行驅(qū)動)時(shí),485總線的差分電壓基本為0,此時(shí)總線就處于一個(gè)不確定的狀態(tài)。同時(shí)由于目前485芯片為了提高總線上的節(jié)點(diǎn)數(shù),輸入阻抗設(shè)計(jì)的比較高,例如輸入阻抗為1/4單位阻抗或者1/8單位阻抗(單位阻抗為12kΩ,1/4單位阻抗為48kΩ),在管腳懸空時(shí)容易受到電磁干擾。
因此為了防止485總線出現(xiàn)上述情況,通常在485總線上增加上下拉電阻(通常A接上拉電阻,B總線下拉電阻)。若使用隔離RS-485收發(fā)模塊(例如RSM485PCHT),由于模塊內(nèi)部具有上下拉電阻(對于RSM485PCHT,內(nèi)部上下拉電阻為24kΩ),因此在模塊外部一般不需要增加上下拉電阻。
二、什么情況下需要加上下拉電阻?
當(dāng)遇到信號反射問題時(shí),通常會通過增加匹配電阻來避免信號反射,以1對1通信為例,如圖1所示。由于485總線通常使用特性阻抗為120Ω的雙絞線,因此在485總線的首尾兩端增加120Ω終端電阻來避免信號反射問題。
根據(jù)RSM485PCHT的具體參數(shù)(如表1)可以得到如圖2所示等效電路,其中RPU、RPD為模塊內(nèi)部在485總線上加的上下拉電阻,RIN為模塊的輸入阻抗。
當(dāng)兩個(gè)模塊都處于接收狀態(tài)時(shí),可以根據(jù)基爾霍夫電流定律對節(jié)點(diǎn)A和節(jié)點(diǎn)B列出下列公式:
根據(jù)上述公式可以計(jì)算AB之間的差分電壓為:
此時(shí)模塊已處于不確定狀態(tài),模塊接收器可能輸出為高電平,也可能輸出為低電平,這時(shí)就需要在模塊外部增加上下拉電阻保證模塊在空閑時(shí)不處于不確定狀態(tài)。
三、上下拉電阻如何選擇?
假設(shè)模塊的輸出電源電壓V?O相同,由于RGND接在一起,因此可以認(rèn)為模塊內(nèi)部的上拉電阻是并聯(lián)在一起的,為了方便解釋,對圖2的電路進(jìn)行整理,如圖3所示,在模塊外部增加上下拉電阻可以選擇只增加一組,也可以選擇在每個(gè)模塊都增加上下拉電阻,為了解釋方便,我們在485總線上增加一組上下拉電阻。
-
三極管
+關(guān)注
關(guān)注
143文章
3619瀏覽量
122172 -
上拉電阻
+關(guān)注
關(guān)注
5文章
360瀏覽量
30653 -
下拉電阻
+關(guān)注
關(guān)注
4文章
147瀏覽量
20564 -
RS485
+關(guān)注
關(guān)注
39文章
1163瀏覽量
82443 -
門電路
+關(guān)注
關(guān)注
7文章
199瀏覽量
40202
原文標(biāo)題:關(guān)于上下拉電阻的探究以及RS485上下拉電阻如何選擇?
文章出處:【微信號:電子匯,微信公眾號:電子匯】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論