0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)計(jì)算公式

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:49 ? 次閱讀

神經(jīng)網(wǎng)絡(luò)計(jì)算公式

神經(jīng)網(wǎng)絡(luò)是一種類似于人腦的神經(jīng)系統(tǒng)的計(jì)算模型,它是一種可以用來進(jìn)行模式識別、分類、預(yù)測等任務(wù)的強(qiáng)大工具。在深度學(xué)習(xí)領(lǐng)域,深度神經(jīng)網(wǎng)絡(luò)已成為最為重要的算法之一。在本文中,我們將重點(diǎn)介紹如何積極神經(jīng)網(wǎng)絡(luò)計(jì)算公式,以及如何使用這些公式來搭建深度神經(jīng)網(wǎng)絡(luò)。

1. 基礎(chǔ)計(jì)算公式

在神經(jīng)網(wǎng)絡(luò)中,最基本的計(jì)算公式是前向傳遞計(jì)算。在這種計(jì)算中,網(wǎng)絡(luò)按照輸入數(shù)據(jù)從輸入層到輸出層依次通過每一個(gè)層,每一層都向下傳遞一組權(quán)重矩陣和一個(gè)偏差向量,這些矩陣和向量可以通過反向傳播來進(jìn)行更新優(yōu)化。

(1) 前向傳遞:

該公式表示了計(jì)算輸入x通過網(wǎng)絡(luò)后得到的結(jié)果y的方法。其中,Wi表示第i層權(quán)重矩陣,bi表示第i層偏差向量。f(·)表示激活函數(shù),其是神經(jīng)網(wǎng)絡(luò)非線性關(guān)系的建立者。

(2) 反向傳播:

反向傳播是神經(jīng)網(wǎng)絡(luò)訓(xùn)練時(shí)用到的一種優(yōu)化算法,它是通過最小化損失函數(shù)來更新權(quán)重和偏差的矩陣和向量。對于每一層神經(jīng)元的激活情況,都可以計(jì)算出其誤差項(xiàng),然后通過誤差反向傳遞求出該層的權(quán)重和偏差的梯度,使其朝著讓損失函數(shù)減小的方向進(jìn)行更新。

其中,δi為第i層誤差項(xiàng),σ'(·)表示激活函數(shù)f(·)的求導(dǎo)函數(shù),T表示矩陣的轉(zhuǎn)置。這個(gè)求導(dǎo)過程是計(jì)算梯度的關(guān)鍵所在,誤差項(xiàng)的計(jì)算公式也是神經(jīng)網(wǎng)絡(luò)中的關(guān)鍵內(nèi)容之一。

2. 線性計(jì)算和非線性計(jì)算

在神經(jīng)網(wǎng)絡(luò)中,每一層計(jì)算都由一些線性變換和非線性變換組成。

(1) 線性變換:

線性變換是指通過權(quán)重矩陣和偏差向量對輸入數(shù)據(jù)進(jìn)行的簡單線性組合運(yùn)算,用于對輸入數(shù)據(jù)空間進(jìn)行映射。

其中,W為權(quán)重矩陣,b為偏差向量,x為輸入數(shù)據(jù),y為輸出數(shù)據(jù)。

(2) 非線性變換:

為了更好地?cái)M合和理解非線性關(guān)系,人們引入了非線性變換,其中Sigmoid、ReLU等激活函數(shù)是深度學(xué)習(xí)中使用最廣泛的激活函數(shù)。如下圖所示:

其中Sigmoid函數(shù)的公式為:

ReLU函數(shù)的公式為:

3. Dropout計(jì)算

Dropout是一種有效的防止過擬合的方法。當(dāng)一個(gè)神經(jīng)網(wǎng)絡(luò)太復(fù)雜以至于它學(xué)習(xí)了訓(xùn)練數(shù)據(jù),但卻不能泛化到新數(shù)據(jù)時(shí),就會發(fā)生過擬合。Dropout算法會在神經(jīng)網(wǎng)絡(luò)的每一層上隨機(jī)斷開一些神經(jīng)元的連接,并以一定的概率來保持每個(gè)神經(jīng)元的連接不變,這樣可以使網(wǎng)絡(luò)變得更加魯棒,防止過擬合。

公式如下:

其中,m為隨機(jī)刪減的神經(jīng)元數(shù)量,p為隨機(jī)刪減神經(jīng)元的概率,W和b是本層權(quán)重矩陣和偏差向量,x是輸入數(shù)據(jù),y是輸出數(shù)據(jù)。

4. Batch Norm計(jì)算

Batch Norm是一種常用的歸一化方法,它的作用是將網(wǎng)絡(luò)中的每一層的輸出值進(jìn)行標(biāo)準(zhǔn)化,讓它們更加服從正態(tài)分布。這種標(biāo)準(zhǔn)化可以加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練速度,同時(shí)也有助于防止梯度消失和梯度爆炸。

Batch Norm的公式如下:

其中,μ表示批量標(biāo)準(zhǔn)化中的均值,σ表示批量標(biāo)準(zhǔn)化中的標(biāo)準(zhǔn)差,?是用來調(diào)整歸一化范圍的參數(shù),ε是一個(gè)極小的常數(shù),以防止分母為零。公式中的γ和β是可學(xué)習(xí)的參數(shù),它們用來調(diào)整網(wǎng)絡(luò)輸出值的比例和偏置。

5. 卷積計(jì)算

卷積計(jì)算是一種非常重要的神經(jīng)網(wǎng)絡(luò)計(jì)算方式,它廣泛應(yīng)用于計(jì)算機(jī)視覺、自然語言處理等領(lǐng)域。卷積計(jì)算通過將核函數(shù)按照一定步長和方向在輸入數(shù)據(jù)上進(jìn)行滑動,從而計(jì)算出一組卷積結(jié)果,從而實(shí)現(xiàn)對輸入數(shù)據(jù)的變換和提取特征。

卷積計(jì)算的關(guān)鍵是計(jì)算卷積核與輸入層之間的點(diǎn)積。在卷積計(jì)算中,卷積核是一個(gè)矩陣,表示一組可學(xué)習(xí)的卷積參數(shù);而輸入數(shù)據(jù)則是一個(gè)二維矩陣,表示圖像或文本的原始特征。

卷積計(jì)算的公式如下:

其中,W為卷積核矩陣,b為偏差向量,表示卷積核對輸入數(shù)據(jù)進(jìn)行卷積變換后的結(jié)果。i和j分別表示第i行和第j列元素,k和l分別表示卷積核的行和列坐標(biāo)。stride表示卷積操作時(shí)移動的步長。

6. 池化計(jì)算

池化是一種簡單而有效的卷積特征降維方法,可以應(yīng)用在神經(jīng)網(wǎng)絡(luò)的全連接層之前,減少網(wǎng)絡(luò)參數(shù)并且能夠改善模型測試的準(zhǔn)確度。

池化操作可以分為Max Pooling和Average Pooling兩種方式。其中Max Pooling是通過對輸入數(shù)據(jù)的不同區(qū)域內(nèi)的數(shù)值進(jìn)行比較,然后將每個(gè)區(qū)域內(nèi)的最大值作為輸出結(jié)果。而Average Pooling則是對輸入數(shù)據(jù)的不同區(qū)域進(jìn)行取平均操作。

池化計(jì)算的公式如下:

其中,σ為池化方式,k表示池化窗口的大小,stride為池化操作時(shí)移動的步長,原始輸入矩陣為X,池化后的結(jié)果為Y。

7. Skeletonization計(jì)算

Skeletonization是一種常用于圖像處理領(lǐng)域的算法,可以用于將復(fù)雜的圖像轉(zhuǎn)化為一些簡單的骨架形式,方便進(jìn)行后續(xù)處理和分析。

Skeletonization算法計(jì)算公式如下:

其中,X表示原始輸入圖像,M表示骨架化后的結(jié)果。此公式的思路是不斷將圖像中的最外層輪廓進(jìn)行拓?fù)涮幚?,使其成為單像素線條的骨架形式,直到整個(gè)圖像被轉(zhuǎn)化為一個(gè)一維的骨架。Skeletonization算法在人腦皮層分析等許多領(lǐng)域都有著廣泛的應(yīng)用。

8. 總結(jié)

本文詳細(xì)介紹了神經(jīng)網(wǎng)絡(luò)中的各種計(jì)算公式,包括前向傳遞、反向傳播、線性和非線性變換、Dropout、Batch Norm、卷積計(jì)算、池化計(jì)算以及Skeletonization的計(jì)算方法。這些公式是深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練和優(yōu)化的關(guān)鍵所在,理解這些公式及其實(shí)現(xiàn)方法對于掌握深度學(xué)習(xí)算法是非常必要的。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點(diǎn)是每一層的每個(gè)神經(jīng)元都與下一層的所有神經(jīng)元相連。這種結(jié)構(gòu)簡單直觀,但在
    的頭像 發(fā)表于 11-15 14:53 ?433次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?692次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用

    卷積神經(jīng)網(wǎng)絡(luò)(FCN)是深度學(xué)習(xí)領(lǐng)域中的一種特殊類型的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),尤其在計(jì)算機(jī)視覺領(lǐng)域表現(xiàn)出色。它通過全局平均池化或轉(zhuǎn)置卷積處理任意尺寸
    的頭像 發(fā)表于 07-11 11:50 ?1138次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1516次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1299次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:49 ?553次閱讀

    bp神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:12 ?1186次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)分類方法有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測、語義分割等計(jì)算機(jī)視覺任務(wù)。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 09:40 ?471次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)計(jì)算過程和步驟

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:36 ?591次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?412次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋
    的頭像 發(fā)表于 07-02 16:47 ?577次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理和應(yīng)用范圍

    和應(yīng)用范圍。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本原理 1. 卷積層(Convolutional Layer) 卷積層是CNN的核心組成部分,其主要功能是提取圖像中的局部特征。
    的頭像 發(fā)表于 07-02 15:30 ?1210次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)及其功能

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的基
    的頭像 發(fā)表于 07-02 14:45 ?2093次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的原
    的頭像 發(fā)表于 07-02 14:44 ?654次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?3986次閱讀