與硅器件相比,SiC MOSFET的跨導(dǎo)(增益)更低,內(nèi)部柵極電阻更高,其柵極導(dǎo)通閾值可能低于2 V。因此,在關(guān)斷狀態(tài)下,必須向SiC MOSFET施加負(fù)柵源電壓(通常為-5 V)。SiC器件的柵源電壓通常要求在18 V ~ 20 V之間,以降低導(dǎo)通狀態(tài)下的導(dǎo)通電阻(RDS)。SiC MOSFET工作在低VGS下可能會導(dǎo)致熱應(yīng)力或由于高RDS而可能導(dǎo)致故障。與低增益相關(guān)的其他影響會直接影響幾個重要的動態(tài)開關(guān)特性,在設(shè)計適當(dāng)?shù)臇艠O驅(qū)動電路時必須考慮這些影響,包括導(dǎo)通電阻、柵極電荷(米勒平臺)和過電流(DESAT)保護(hù)。
二導(dǎo)通電阻在低VGS時,一些SiC器件的導(dǎo)通電阻與結(jié)溫特性之間的關(guān)系曲線看起來是拋物線*(由于內(nèi)部器件特性的組合)。(*這適用于安森美M1和M2 SiC MOSFET。)當(dāng)VGS = 14 V時,RDS似乎具有負(fù)溫度系數(shù)(NTC)特性,即電阻隨溫度升高而降低。SiC MOSFET的這一獨特特征直接歸因于其低增益,這意味著如果兩個或更多的SiC MOSFET并聯(lián)工作在低VGS(負(fù)溫度系數(shù))下,可能會導(dǎo)致災(zāi)難性損壞。因此,只有當(dāng)VGS足以確??煽康恼郎囟认禂?shù)工作時(即VGS>18V),才建議將SiC MOSFET并聯(lián)工作。
圖1:M1或M2 SiC MOSFET的導(dǎo)通電阻與結(jié)溫之間的關(guān)系曲線新一代M3 SiC在所有VGS和所有溫度范圍都顯示正溫度系數(shù)
圖2:M3 SiC MOSFET的導(dǎo)通電阻與結(jié)溫之間的關(guān)系曲線
三柵極電荷向SiC MOSFET施加?xùn)旁措妷?VGS)時,電荷被傳輸以盡快使VGS從VGS(MIN)(VEE)和VGS(MAX)(VDD)升高。由于器件的內(nèi)部電容是非線性的,因此可以使用VGS與柵極電荷(QG)的關(guān)系曲線來確定在給定的VGS下必須傳輸多少電荷。SiC MOSFET的這種 "米勒平臺 "發(fā)生在較高的VGS上,而且不像硅MOSFET那樣平坦。不平坦的米勒平臺意味著在相應(yīng)的電荷范圍內(nèi),VGS不是不變的,這也是由于器件低增益導(dǎo)致的。同樣值得注意的是,QG = 0 nC(關(guān)斷SiC MOSFET所需的電荷量) 不會發(fā)生在VGS = 0 V時,因此VGS必須為負(fù) (本例中為-5 V),以使柵極完全放電。
由于我們想測量導(dǎo)通或關(guān)斷SiC MOSFET所需的電荷量,我們的曲線只繪制了Qg的增量(或Qg的累積或Qg的變化)。這個數(shù)值也叫Qg。這可能會引起混淆。我們需要將這張圖解讀為需要的能量,而不純粹是存儲在柵源電容器中的能量。
圖3:SiC MOSFET柵源電壓與柵極電荷的關(guān)系
使用負(fù)柵極驅(qū)動阻斷電壓主要是為了減少關(guān)斷狀態(tài)下的漏電流。這也是由于跨導(dǎo)增益低造成的。使用負(fù)的阻斷電壓還可以減少開關(guān)損耗,主要是在關(guān)斷期間的開關(guān)損耗。
因此,幾乎對于所有的SiC MOSFET,都建議在關(guān)斷狀態(tài)下使用的最小VGS為-5 V < VGS(MIN) < -2 V,有些制造商規(guī)定電壓低至-10 V。
四欠壓保護(hù)(DESAT)DESAT保護(hù)是一種過電流檢測,起源于IGBT的驅(qū)動電路。在導(dǎo)通時,如果IGBT不能再保持飽和狀態(tài)("去飽和"),集電極-發(fā)射極電壓就會上升,同時全集電極電流流過。顯然,這對效率有不利影響,在最壞的情況下,可能導(dǎo)致IGBT的災(zāi)難性故障。所謂的 "DESAT "功能監(jiān)測IGBT的集電極-發(fā)射極電壓,并檢測何時出現(xiàn)潛在的破壞性條件。雖然SiC MOSFET中的故障機(jī)制有些不同,但會有類似的情況,在最大ID流過時VDS可能上升。如果導(dǎo)通期間的最大VGS太低,柵極驅(qū)動導(dǎo)通沿太慢,或者存在短路或過載情況,就會出現(xiàn)這種不理想的條件。在滿載ID的情況下,RDS會增加,導(dǎo)致VDS意外上升。當(dāng)SiC MOSFET發(fā)生欠飽和事件時,VDS的反應(yīng)非常迅速,而最大漏極電流繼續(xù)流過不斷增加的導(dǎo)通電阻。當(dāng)VDS達(dá)到預(yù)定的閾值時,就可以激活保護(hù)。應(yīng)特別注意避免感測VDS的延遲,因為延遲會掩蓋這種現(xiàn)象。因此,DESAT是柵極驅(qū)動電路的一個重要的輔助性保護(hù)。
五動態(tài)開關(guān)SiC MOSFET的導(dǎo)通和關(guān)斷狀態(tài)有四個不同的階段。所示的動態(tài)開關(guān)波形呈現(xiàn)的是理想工作條件的情況。然而,在實踐中,封裝寄生物,如引線和邦定線電感、寄生電容和PCB布局會極大地影響實際波形。合適的器件選擇、最佳的PCB布局,以及對設(shè)計好的柵極驅(qū)動電路的重視,對于優(yōu)化開關(guān)電源應(yīng)用中使用的SiC MOSFET的性能都是至關(guān)重要的。
圖4:SiC MOSFET導(dǎo)通序列的4個階段
六柵極驅(qū)動電路的設(shè)計要求為了補償器件低增益,同時實現(xiàn)高效、高速的開關(guān),對SiC柵極驅(qū)動電路有以下關(guān)鍵要求:
-
對于大多數(shù)SiC MOSFET,驅(qū)動電壓在-5 V > VGS > 20 V之間時性能最佳。柵極驅(qū)動電路應(yīng)能承受VDD = 25 V和VEE = -10 V,以適用于最廣泛的可用器件
-
VGS必須有快速的上升沿和下降沿(在幾ns范圍內(nèi))
-
在整個米勒平臺區(qū)域內(nèi),有能力提供高的峰值柵極灌電流和拉電流(數(shù)安培)
-
當(dāng)VGS下降到米勒平臺以下時,需要提供一個非常低的阻抗保持或 "鉗位",以實現(xiàn)高的灌電流能力。灌電流的額定值應(yīng)超過僅對SiC MOSFET的輸入電容放電所需的電流。10A左右的峰值灌電流最小額定值應(yīng)適用于高性能、半橋電源拓?fù)浣Y(jié)構(gòu)
-
VDD欠壓鎖定(UVLO)水平,與開關(guān)開始前VGS>~16 V的要求相匹配
-
VEE UVLO監(jiān)測能力確保負(fù)電壓軌在可接受的范圍內(nèi)
-
能夠檢測、報告故障和提供保護(hù)的去飽和功能,使SiC MOSFET長期可靠運行
-
支持高速開關(guān)的低寄生電感
-
小尺寸驅(qū)動器封裝,布局盡可能靠近SiC MOSFET
安森美的NCP51705是一款SiC柵極驅(qū)動器IC,提供高的設(shè)計靈活度和集成度,幾乎與任何SiC MOSFET兼容。NCP51705集成許多通用柵極驅(qū)動器IC所共有的功能,包括:
-
VDD正電源電壓最高28V
-
高峰值輸出電流:6 A拉電流和10 A灌電流
-
內(nèi)置5 V基準(zhǔn)可用于偏置5 V、20 mA以下的低功耗負(fù)載(數(shù)字隔離器、光耦合器、微控制器等)
-
單獨的信號和電源接地連接
-
單獨的源和灌輸出引腳
-
內(nèi)置熱關(guān)斷保護(hù)
-
單獨的非反相和反相TTL、PWM輸入
圖5:NCP51705 SiC柵極驅(qū)動器框圖
然而,該IC集成幾個獨特的功能,能夠以最少的外部元器件設(shè)計出可靠的SiC MOSFET柵極驅(qū)動電路。這些功能包括:
八總結(jié)
在選擇合適的柵極驅(qū)動器IC時,SiC MOSFET的低增益給設(shè)計人員帶來了難題。通用的低邊柵極驅(qū)動器不能高效和可靠地驅(qū)動SiC MOSFET。NCP51705集成一系列功能,為設(shè)計人員提供了一個簡單、高性能、高速的解決方案,高效、可靠地驅(qū)動SiC MOSFET。
希望以上這些內(nèi)容可以在實際設(shè)計過程中對大家有所幫助。將安森美加入星標(biāo),更新不容錯過。點個星標(biāo),茫茫人海也能一眼看到我
「點贊、在看,記得兩連~」
原文標(biāo)題:如何優(yōu)化SiC MOSFET的柵極驅(qū)動?這款I(lǐng)C方案推薦給您
文章出處:【微信公眾號:安森美】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
-
安森美
+關(guān)注
關(guān)注
32文章
1693瀏覽量
92096
原文標(biāo)題:如何優(yōu)化SiC MOSFET的柵極驅(qū)動?這款I(lǐng)C方案推薦給您
文章出處:【微信號:onsemi-china,微信公眾號:安森美】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論