在固液界面動(dòng)力學(xué)中,固體的自由電子起著至關(guān)重要的作用。在液體流動(dòng)時(shí),會(huì)引起電子極化,并驅(qū)動(dòng)電流;反過來,電子激勵(lì)參與流體動(dòng)力摩擦。然而,潛在的固體-液體相互作用,一直缺乏直接的實(shí)驗(yàn)探針。
近日,德國馬普高分子所Xiaoqing Yu,Nikita Kavokine等,在Nature Nanotechnology上發(fā)文,報(bào)道利用超快光譜研究了液體-石墨烯界面的能量轉(zhuǎn)移。
可見激發(fā)脈沖準(zhǔn)瞬時(shí)加熱了石墨烯電子,然后用太赫茲脈沖監(jiān)測(cè)電子溫度的時(shí)間演化。實(shí)驗(yàn)觀察到水加速了石墨烯電子的冷卻,而其他極性液體的冷卻動(dòng)力學(xué),基本不受影響。固體-液體傳熱的量子理論解釋了,基于石墨烯表面等離子體激元模式和所謂的水分子(水電荷波動(dòng)hydrons—water charge )之間的共振,特別是水天平動(dòng)模式 water libration modes(允許有效的能量傳遞),水特定的冷卻增強(qiáng)。
該項(xiàng)研究,為集體模式介導(dǎo)的固液相互作用,提供了直接的實(shí)驗(yàn)證據(jù),并支持理論上提出的量子摩擦機(jī)制。同時(shí),為進(jìn)一步揭示了水-石墨烯界面,特別較大的熱邊界電導(dǎo),并提出了增強(qiáng)石墨烯基納米結(jié)構(gòu)熱導(dǎo)率的策略。
Electron cooling in graphene enhanced by plasmon–hydron resonance.等離子體共振增強(qiáng)石墨烯中的電子冷卻。
圖1:固-液界面的傳熱和摩擦。
圖2:在石墨烯中,熱電子弛豫的皮秒測(cè)量。
圖3:電子-液體傳熱機(jī)理。
圖4:等離子體激元-水分子強(qiáng)耦合。
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。
舉報(bào)投訴
原文標(biāo)題:研究前沿:Nature Nanotechnology-石墨烯 | 量子摩擦制冷
文章出處:【微信號(hào):深圳市賽姆烯金科技有限公司,微信公眾號(hào):深圳市賽姆烯金科技有限公司】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
相關(guān)推薦
新型柔性半導(dǎo)體材料石墨烯被普遍認(rèn)為是下一代半導(dǎo)體元器件的重要載體。自旋軌道耦合與凈核自旋影響的消除也為石墨烯在量子芯片中的應(yīng)用提供誘人的前景
發(fā)表于 10-05 12:25
?1687次閱讀
探索未來能量?jī)?chǔ)存新篇章:高性能4.2V 5500F 2.6Ah石墨烯電容推薦
隨著科技的飛速發(fā)展,我們對(duì)于能量?jī)?chǔ)存的需求也日益增長(zhǎng)。在眾多的儲(chǔ)能元件中,石墨烯電容以其獨(dú)特的優(yōu)勢(shì),正逐
發(fā)表于 02-21 20:28
以作為導(dǎo)體。這從本質(zhì)上為科學(xué)家們提供了一個(gè)相對(duì)簡(jiǎn)單的為石墨烯制造人工能隙的方法。(所謂能隙,在這里可以簡(jiǎn)單理解為石墨烯納米帶間的間隙) 早在去年夏天,就有
發(fā)表于 01-15 10:46
傳感器。石墨烯是世上最薄也是最堅(jiān)硬的納米材料,并且透光率極高。正是這些特性使得它成為了倫敦帝國理工學(xué)院研究人造皮膚的原材料。研究人員目前正在嘗試通過3D打印的方式將其打造成化學(xué)改性涂層
發(fā)表于 01-28 10:23
據(jù)SlashGear網(wǎng)站報(bào)道,去年,美國萊斯大學(xué)研究人員宣布他們已經(jīng)開發(fā)出利用計(jì)算機(jī)控制的激光生產(chǎn)石墨烯的方法,由這種方法生產(chǎn)的石墨烯產(chǎn)
發(fā)表于 01-28 11:37
英國劍橋大學(xué)29日發(fā)布的一項(xiàng)研究成果顯示,研究人員成功將石墨烯電極植入小鼠腦部,并直接與神經(jīng)元連接,這項(xiàng)技術(shù)未來可用于修復(fù)截肢、癱瘓甚至帕金森氏 癥患者的感知功能,協(xié)助他們更好地康
發(fā)表于 02-01 15:39
有望突破。實(shí)現(xiàn)低成本制備石墨烯是實(shí)現(xiàn)石墨烯產(chǎn)業(yè)化的基本前提,預(yù)計(jì)2017年,隨著研究的不斷深入,石墨
發(fā)表于 01-18 09:09
`日前,當(dāng)華為中央研究院瓦特實(shí)驗(yàn)室于第57屆日本電池大會(huì)上宣布“推出業(yè)界首個(gè)高溫長(zhǎng)壽命石墨烯基鋰離子電池”時(shí),國內(nèi)一片沸騰。盡管后來表明,此“石墨烯
發(fā)表于 02-15 08:20
一定清楚它的價(jià)格堪比黃金。好比一塊純金的手機(jī)電池,誰用得起啊。業(yè)內(nèi)人有個(gè)比方,“誰都知道鉆石硬度好,可沒人用來做菜刀?!逼浯?,技術(shù)難度大。清華能源互聯(lián)網(wǎng)研究員劉冠偉則表示,石墨烯本身納米材料的高比表面
發(fā)表于 07-12 15:54
`<p>石墨烯(Graphene)由于結(jié)構(gòu)獨(dú)特、性能優(yōu)異、理論研究價(jià)值高、應(yīng)用遠(yuǎn)景廣闊而備受關(guān)注,是已知的世上最薄、最堅(jiān)硬、柔韌性最好、重量最輕的納米材料。在其廣泛
發(fā)表于 12-22 17:26
一、引言2010年,諾貝爾物理學(xué)被兩位英國物理學(xué)家安德烈·海姆和康斯坦丁·諾沃肖諾夫奪得,他們因制備出了石墨烯而獲此殊遇。而石墨烯的成功制備,引起了學(xué)界的巨大轟動(dòng),也引發(fā)了一場(chǎng)
發(fā)表于 07-29 07:48
烯(Graphene)的理論研究已有60 多年的歷史。石墨烯一直被認(rèn)為是假設(shè)性的結(jié)構(gòu),無法單獨(dú)穩(wěn)定存在,直至2004 年,英國曼徹斯特大學(xué)物理學(xué)家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成
發(fā)表于 07-29 06:24
他材料相比,石墨烯還擁有許多極為特殊的性質(zhì)。例如,在室溫下也可呈現(xiàn)量子霍爾效應(yīng);可實(shí)現(xiàn)名為“Klein Tunneling”的、透射率為100%的通道效應(yīng);電阻值為固定值而與距離無關(guān)的“彈道輸運(yùn)
發(fā)表于 07-29 06:27
Sinitskii表示,“我們以前也研究過其它碳基材料傳感器,如石墨烯和氧化石墨烯。使用石墨
發(fā)表于 05-18 06:44
在第二篇 Nature 論文中,曹原等人展示了魔角扭曲雙層石墨烯(magic-angle twisted bilayer graphene, MATBG)的研究。他們利用納米級(jí)針尖掃描
發(fā)表于 06-03 17:24
?7088次閱讀
評(píng)論