0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

什么是非均勻數(shù)據(jù)重采樣?哪種非均勻數(shù)據(jù)重采樣方法更適合你?

冬至子 ? 來源:菜J數(shù)據(jù)分析 ? 作者:菜J數(shù)據(jù)分析 ? 2023-06-20 15:21 ? 次閱讀

在數(shù)據(jù)分析和機(jī)器學(xué)習(xí)領(lǐng)域,我們常常需要處理非均勻數(shù)據(jù)。非均勻數(shù)據(jù)是指具有不平衡分布或樣本數(shù)量不均等的數(shù)據(jù)集。為了準(zhǔn)確建模和預(yù)測,我們需要對這些非均勻數(shù)據(jù)進(jìn)行重采樣。本文將詳細(xì)介紹什么是非均勻數(shù)據(jù)重采樣以及如何應(yīng)用不同的方法來解決這一問題。

一、什么是非均勻數(shù)據(jù)重采樣?

非均勻數(shù)據(jù)重采樣是一種數(shù)據(jù)處理技術(shù),用于解決數(shù)據(jù)集中存在的類別不平衡或樣本數(shù)量不均等的問題。在非均勻數(shù)據(jù)中,某些類別的樣本數(shù)量很少,而其他類別的樣本數(shù)量很多。這種不平衡會導(dǎo)致建模和預(yù)測過程中的偏差,影響結(jié)果的準(zhǔn)確性。

非均勻數(shù)據(jù)重采樣的目標(biāo)是通過增加少數(shù)類別的樣本數(shù)量或減少多數(shù)類別的樣本數(shù)量,使得數(shù)據(jù)集更加平衡。通過重采樣,我們可以在保持?jǐn)?shù)據(jù)分布特征的前提下,增加較少樣本的可用性,從而提高模型的性能。

二、常見的非均勻數(shù)據(jù)重采樣方法和Python示例

(1)過采樣(Oversampling):過采樣方法通過增加少數(shù)類別的樣本數(shù)量來平衡數(shù)據(jù)集。其中一種常見的方法是復(fù)制少數(shù)類別的樣本,使其在數(shù)據(jù)集中出現(xiàn)多次。然而,簡單復(fù)制樣本可能會導(dǎo)致過擬合問題。因此,一些改進(jìn)的過采樣方法被提出,如SMOTE(合成少數(shù)類過采樣技術(shù))和ADASYN(自適應(yīng)合成)等,它們根據(jù)少數(shù)類別樣本之間的距離關(guān)系合成新的樣本。

使用imbalanced-learn庫中的RandomOverSampler方法進(jìn)行過采樣:

from imblearn.over_sampling import RandomOverSampler 
X_resampled, y_resampled = RandomOverSampler().fit_resample(X, y)

使用imbalanced-learn庫中的SMOTE方法進(jìn)行合成少數(shù)類過采樣:

from imblearn.over_sampling import SMOTE 
X_resampled, y_resampled = SMOTE().fit_resample(X, y)

完整示例:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from imblearn.over_sampling import RandomOverSampler
from sklearn.metrics import classification_report


# 加載數(shù)據(jù)集
data = pd.read_csv('your_dataset.csv')


# 分割特征和目標(biāo)變量
X = data.drop('target', axis=1)
y = data['target']


# 將數(shù)據(jù)集拆分為訓(xùn)練集和測試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


# 方法1.創(chuàng)建RandomOverSampler對象
ros = RandomOverSampler(random_state=42)
# 對訓(xùn)練集進(jìn)行過采樣
X_train_resampled, y_train_resampled = ros.fit_resample(X_train, y_train)


# 方法2創(chuàng)建SMOTE對象
# smote = SMOTE(random_state=42)
# 對訓(xùn)練集進(jìn)行過采樣
# X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)


# 使用過采樣后的數(shù)據(jù)訓(xùn)練模型
model = LogisticRegression()
model.fit(X_train_resampled, y_train_resampled)


# 在測試集上進(jìn)行預(yù)測
y_pred = model.predict(X_test)


# 輸出分類報告
print(classification_report(y_test, y_pred))

(2)欠采樣(Undersampling):欠采樣方法通過減少多數(shù)類別的樣本數(shù)量來平衡數(shù)據(jù)集。最簡單的欠采樣方法是隨機(jī)地刪除多數(shù)類別的樣本。然而,這種方法可能會丟失一些重要的信息。因此,一些更高級的欠采樣方法被提出,如NearMiss和ClusterCentroids等,它們通過保留具有代表性的多數(shù)類別樣本來減少樣本數(shù)量。

使用imbalanced-learn庫中的RandomUnderSampler方法進(jìn)行欠采樣:

from imblearn.under_sampling import RandomUnderSampler 
X_resampled, y_resampled = RandomUnderSampler().fit_resample(X, y)

使用imbalanced-learn庫中的NearMiss方法進(jìn)行近鄰欠采樣:

from imblearn.under_sampling import NearMiss 
X_resampled, y_resampled = NearMiss().fit_resample(X, y)

(3)混合采樣(Combination Sampling):混合采樣方法是過采樣和欠采樣的結(jié)合。它同時對多數(shù)和少數(shù)類別進(jìn)行處理,以達(dá)到數(shù)據(jù)集平衡的效果。其中一種常見的混合

混采樣方法是SMOTEENN(SMOTE + Edited Nearest Neighbors)方法。它首先使用SMOTE方法對少數(shù)類別進(jìn)行過采樣,生成一些合成樣本。然后,使用Edited Nearest Neighbors(ENN)方法對多數(shù)類別進(jìn)行欠采樣,刪除一些樣本。通過這種方式,混合采樣方法能夠克服簡單過采樣和欠采樣方法的一些問題,同時平衡數(shù)據(jù)集。

使用imbalanced-learn庫中的SMOTEENN方法進(jìn)行SMOTE + Edited Nearest Neighbors采樣:

from imblearn.combine import SMOTEENN 
X_resampled, y_resampled = SMOTEENN().fit_resample(X, y)

(4)加權(quán)重采樣(Weighted Resampling):加權(quán)重采樣方法通過為不同類別的樣本賦予不同的權(quán)重來平衡數(shù)據(jù)集。它可以用于訓(xùn)練模型時調(diào)整樣本的重要性。常見的加權(quán)重采樣方法包括基于頻率的加權(quán)和基于錯誤率的加權(quán)。基于頻率的加權(quán)根據(jù)每個類別的樣本數(shù)量設(shè)置權(quán)重,使得樣本數(shù)量少的類別具有更高的權(quán)重。基于錯誤率的加權(quán)根據(jù)每個類別的錯誤率來調(diào)整權(quán)重,使得錯誤率高的類別具有更高的權(quán)重。

import torch
from torch.utils.data import DataLoader, WeightedRandomSampler


# 假設(shè)有一個不均衡的數(shù)據(jù)集,包含10個樣本和對應(yīng)的類別標(biāo)簽
data = [
    ([1, 2, 3], 0),
    ([4, 5, 6], 1),
    ([7, 8, 9], 1),
    ([10, 11, 12], 0),
    ([13, 14, 15], 1),
    ([16, 17, 18], 0),
    ([19, 20, 21], 1),
    ([22, 23, 24], 0),
    ([25, 26, 27], 1),
    ([28, 29, 30], 1)
]


# 分割特征和目標(biāo)變量
X = [sample[0] for sample in data]
y = [sample[1] for sample in data]


# 創(chuàng)建權(quán)重列表,根據(jù)類別進(jìn)行加權(quán)
class_counts = torch.tensor([y.count(0), y.count(1)])
weights = 1.0 / class_counts.float()


# 創(chuàng)建WeightedRandomSampler對象
sampler = WeightedRandomSampler(weights, len(weights))


# 創(chuàng)建數(shù)據(jù)加載器,使用加權(quán)重采樣
dataset = list(zip(X, y))
dataloader = DataLoader(dataset, batch_size=2, sampler=sampler)


# 遍歷數(shù)據(jù)加載器獲取批次數(shù)據(jù)
for batch_X, batch_y in dataloader:
    print("Batch X:", batch_X)
    print("Batch y:", batch_y)

三、選擇適當(dāng)?shù)闹夭蓸臃椒?/strong>

選擇適當(dāng)?shù)闹夭蓸臃椒ㄐ枰紤]數(shù)據(jù)集的特點和具體問題的需求。以下是一些建議:

(1)數(shù)據(jù)分析:在重采樣之前,首先對數(shù)據(jù)集進(jìn)行分析,了解每個類別的樣本分布情況和特征。這有助于確定哪些類別是少數(shù)類別,哪些類別是多數(shù)類別,以及是否存在其他特殊情況(如噪聲數(shù)據(jù))。

(2)重采樣策略:根據(jù)數(shù)據(jù)分析的結(jié)果選擇合適的重采樣策略。如果少數(shù)類別的樣本數(shù)量很少,可以考慮過采樣方法;如果多數(shù)類別的樣本數(shù)量較多,可以考慮欠采樣方法;如果兩者都存在問題,可以考慮混合采樣方法或加權(quán)重采樣方法。

(3)驗證效果:在應(yīng)用重采樣方法后,需要評估重采樣對模型性能的影響??梢允褂媒徊骝炞C或保持獨立測試集的方法來評估模型的準(zhǔn)確性、召回率、精確度等指標(biāo),并與未經(jīng)過重采樣的結(jié)果進(jìn)行對比。

四、總結(jié)

非均勻數(shù)據(jù)重采樣是解決非均勻數(shù)據(jù)集問題的重要步驟。通過過采樣、欠采樣、混合采樣和加權(quán)重采樣等方法,我們可以調(diào)整數(shù)據(jù)集的分布,提高模型的性能和準(zhǔn)確性。選擇適當(dāng)?shù)闹夭蓸臃椒ㄐ枰跀?shù)據(jù)分析的結(jié)果,并進(jìn)行有效的評估。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    以遠(yuǎn)場模型(平面波)為例,講解時空采樣定理!

    可以看出均勻線陣的相位無模糊對應(yīng)時域均勻采樣的奈奎斯特定理。多說一句,如果是非均勻線陣、圓陣等形式,可以理解成對應(yīng)維度的
    的頭像 發(fā)表于 09-30 07:16 ?7724次閱讀
    以遠(yuǎn)場模型(平面波)為例,講解時空<b class='flag-5'>采樣</b>定理!

    labview能否對均勻采樣數(shù)據(jù)進(jìn)行處理

    labview能不能恢復(fù)均勻采樣數(shù)據(jù)的波形,進(jìn)而對其進(jìn)行頻譜測量、FFT?
    發(fā)表于 01-15 13:31

    如何實現(xiàn)均勻采樣

    用NI數(shù)據(jù)采集卡,如何用LabVIEW進(jìn)行均勻采樣,并且對所得到的數(shù)據(jù)進(jìn)行運算~請高手指點
    發(fā)表于 04-16 20:26

    labview 等角度采樣

    振動數(shù)據(jù),想實現(xiàn)從等時間間隔采樣到等角度采樣,labview怎樣實現(xiàn)等角度采樣,有具體算法嗎?謝謝啦,聲音與振動的工具包我也下了。
    發(fā)表于 04-20 22:47

    請問PSpice仿真瞬態(tài)分析Transient如何設(shè)置輸出的Excel文件的采樣時刻為均勻采樣時刻?

    every: 1u s,但是導(dǎo)出的Excel文件發(fā)現(xiàn)采樣時刻之間的間隔并不是嚴(yán)格的1us,請問怎么才能設(shè)置輸出文件的時間點是均勻的?設(shè)置界面:采樣時間點數(shù)據(jù)畫的圖:
    發(fā)表于 03-03 12:58

    關(guān)于labview中xy圖中波形采樣的問題

    比如在xy圖中顯示歷史數(shù)據(jù)五萬個點,但是由于數(shù)據(jù)量過大,在設(shè)置游標(biāo)的過程中會出現(xiàn)卡頓,因此想到了利用采樣方法,整體范圍顯示大間隔
    發(fā)表于 08-06 16:17

    請問怎么利用單片機(jī)io口實現(xiàn)均勻采樣?

    怎么利用單片機(jī)io口實現(xiàn)均勻采樣?
    發(fā)表于 10-19 07:47

    均勻采樣的頻譜研究

    均勻采樣的一個很大的優(yōu)點就是它具有抗頻率混疊的性能[ ],首先從均勻采樣討論由采樣而引起的頻譜
    發(fā)表于 03-13 16:18 ?18次下載
    <b class='flag-5'>非</b><b class='flag-5'>均勻</b><b class='flag-5'>采樣</b>的頻譜研究

    基于采樣技術(shù)改進(jìn)的粒子濾波算法

    基于采樣技術(shù)改進(jìn)的粒子濾波算法_李小婷
    發(fā)表于 01-07 20:49 ?1次下載

    一種新的均勻采樣信號的離散傅里葉變換方法

    針對偽隨機(jī)(PN)碼調(diào)制的多普勒激光雷達(dá)中固有的對外差信號不能等間隔采樣的問題,提出一種新的均勻采樣信號的離散傅里葉變換(DFT)方法。首
    發(fā)表于 12-23 11:40 ?0次下載
    一種新的<b class='flag-5'>非</b><b class='flag-5'>均勻</b><b class='flag-5'>采樣</b>信號的離散傅里葉變換<b class='flag-5'>方法</b>

    如何使用概率模型進(jìn)行均勻數(shù)據(jù)聚類算法的設(shè)計介紹

    針對傳統(tǒng)K-means型算法的“均勻效應(yīng)”問題,提出一種基于概率模型的聚類算法。首先,提出一個描述均勻數(shù)據(jù)簇的高斯混合分布模型,該模型允許數(shù)據(jù)
    發(fā)表于 12-13 10:57 ?10次下載

    空間曲線基于內(nèi)在幾何量的均勻采樣方法

    為解決均勻參數(shù)采樣在許多情況下得到質(zhì)量不高的采樣點,進(jìn)而生成不理想的B樣條擬合曲線,提出空間曲線基于內(nèi)在幾何量的均勻采樣
    發(fā)表于 04-22 11:34 ?4次下載
    空間曲線基于內(nèi)在幾何量的<b class='flag-5'>均勻</b><b class='flag-5'>采樣</b><b class='flag-5'>方法</b>

    一種空間曲線基于內(nèi)在幾何量的均勻采樣方法

    為解決均勻參數(shù)采樣在許多情況下得到質(zhì)量不高的采樣點,進(jìn)而生成不理想的B樣條擬合曲線,提出空間曲線基于內(nèi)在幾何量的均勻采樣
    發(fā)表于 04-29 14:11 ?7次下載
    一種空間曲線基于內(nèi)在幾何量的<b class='flag-5'>均勻</b><b class='flag-5'>采樣</b><b class='flag-5'>方法</b>

    任意采樣濾波器設(shè)計應(yīng)用說明

    電子發(fā)燒友網(wǎng)站提供《任意采樣濾波器設(shè)計應(yīng)用說明.pdf》資料免費下載
    發(fā)表于 09-14 14:31 ?0次下載
    任意<b class='flag-5'>重</b><b class='flag-5'>采樣</b>濾波器設(shè)計應(yīng)用說明

    為什么采樣很重要?Pandas中重新采樣的關(guān)鍵問題解析

    采樣是時間序列分析中處理時序數(shù)據(jù)的一項基本技術(shù)。它是關(guān)于將時間序列數(shù)據(jù)從一個頻率轉(zhuǎn)換到另一個頻率,它可以更改數(shù)據(jù)的時間間隔,通過上
    的頭像 發(fā)表于 09-19 17:06 ?2693次閱讀
    為什么<b class='flag-5'>重</b><b class='flag-5'>采樣</b>很重要?Pandas中重新<b class='flag-5'>采樣</b>的關(guān)鍵問題解析