0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

學(xué)技術(shù) | 使用 LPC553X eFlexPWM 生成 6 路互補(bǔ)帶死區(qū) PWM

大大通 ? 2023-01-14 11:00 ? 次閱讀

1.eFlexPWM 介紹

2.PWM GPIO 口配置

3.eFlexPWM 配置(PWM 配置)

4.eFlexPWM 配置(死區(qū) 配置)

5.eFlexPWM 配置代碼

6.開發(fā)板測(cè)試與波形

7.參考文檔

1. eFlexPWM 介紹

eFlexPWM 是 LPC553X 的一個(gè)高級(jí) Timer 外設(shè),針對(duì)電機(jī)應(yīng)用和電源應(yīng)用做了優(yōu)化,并能夠產(chǎn)生各種不同的 PWM 類型,PWM 輸出功能主要有中心對(duì)齊(Center Aligned)、邊緣對(duì)齊(Edge Aligned)、相移(Phase Shifted)、雙開關(guān)(Double Switching)功能。

增強(qiáng)的輸入捕獲功能(Enhanced Capture),可以精確測(cè)量 PWM 頻率和占空比。

一個(gè) eFlexPWM 中還有 4 個(gè)子模塊,4 個(gè)子模塊之間具有同步開關(guān)功能,事件產(chǎn)生時(shí)同時(shí)動(dòng)作,消除了中斷和軟件操作上的延時(shí),特別適合于電機(jī)的換相操作。

eFlexPWM 還可以在精確的時(shí)刻觸發(fā) ADC 進(jìn)行采樣,在電機(jī)相電流采樣中特別方便。


此外還有 counter 不同的重載邏輯,多樣的寄存器 Buffer 更新時(shí)機(jī),PWM 互補(bǔ)和死區(qū)自動(dòng)生成等功能,本文主要講解如何生成 6 路互補(bǔ)帶死區(qū)的 PWM 以應(yīng)用于電機(jī)控制,這些 PWM 通過 PreDriver 后驅(qū)動(dòng) MOS 或 IGBT,下圖是 eFlexPWM 框圖。

0f6450c2-92d4-11ed-ad0d-dac502259ad0.png

2. PWM GPIO 口配置

GPIO 口的初始化和分配使用 MCUXpresso config Tools 來配置,可以減少錯(cuò)誤和沖突,配置完后將自動(dòng)生成的 pin_mux.c 和 pin_mux.h 拷貝到工程中并在 main 中執(zhí)行 BOARD_InitBootPins() 函數(shù)即可,圖中的 A,0 和 B,0 為互補(bǔ)到死區(qū)的一對(duì) PWM,將分別接到 Predriver 后驅(qū)動(dòng)圖中 MOS 管的 T1 和 T2 信號(hào),其他依次類推。

0f6d0910-92d4-11ed-ad0d-dac502259ad0.png0f96e578-92d4-11ed-ad0d-dac502259ad0.png

3. eFlexPWM 配置(頻率配置)

PWM 頻率的配置主要通過配置 eFlexPWM 的 INIT 和 VAL1 寄存器配置,counter 從 INIT 開始計(jì)數(shù),計(jì)到 VAL1 時(shí)重新計(jì)數(shù),如果要產(chǎn)生 20KHz 的 PWM,計(jì)算過程為:INIT = 定時(shí)器時(shí)鐘/20KHz/2 = 150MHz/20KHz/2 = 3750,VAL1 =定時(shí)器時(shí)鐘/20KHz/2 -1 = 3749。部分代碼:

/* value register initial values, duty cycle 50% */

PWMBase->SM[0].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));//1875

PWMBase->SM[1].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));

PWMBase->SM[2].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));

PWMBase->SM[3].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));

PWMBase->SM[0].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

PWMBase->SM[1].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

PWMBase->SM[2].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

PWMBase->SM[3].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

0f9fe3b2-92d4-11ed-ad0d-dac502259ad0.png

4. eFlexPWM 配置(死區(qū)配置)

為了防止上下橋同時(shí)開通造成短路,可以根據(jù) MOS 或 IGBT 的開關(guān)速度設(shè)置合適的死區(qū)時(shí)間,通過 DTCNT0 寄存器設(shè)置,計(jì)算方式如下, M1_PWM_DEADTIME 單位為 us,其位置為上圖中的藍(lán)色部分,部分代碼:

PWMBase->SM[0].DTCNT0 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

5. eFlexPWM 配置代碼

eFlexPWM 的配置主要是開啟時(shí)鐘、復(fù)位、設(shè)置 INIT、VAL1 確定頻率、死區(qū)、模式、占空比設(shè)置寄存器 VAL2、VAL3,以下代碼為基于寄存器方式的完整配置代碼:

void eFlexPWM0_init(void)

{

PWM_Type *PWMBase = (PWM_Type *)PWM0;

/*eFlexPWM0 init*/

SYSCON->PWM0SUBCTL = (SYSCON_PWM0SUBCTL_CLK0_EN_MASK | SYSCON_PWM0SUBCTL_CLK1_EN_MASK | SYSCON_PWM0SUBCTL_CLK2_EN_MASK | SYSCON_PWM0SUBCTL_CLK3_EN_MASK); //Enable Sub-module0 clock

CLOCK_EnableClock(kCLOCK_Pwm0);

/* value register initial values, duty cycle 50% */

PWMBase->SM[0].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));//1875

PWMBase->SM[1].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));

PWMBase->SM[2].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));

PWMBase->SM[3].INIT = PWM_INIT_INIT((uint16_t)(-(M1_PWM_MODULO / 2)));

PWMBase->SM[0].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

PWMBase->SM[1].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

PWMBase->SM[2].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

PWMBase->SM[3].VAL1 = PWM_VAL1_VAL1((uint16_t)((M1_PWM_MODULO / 2) - 1));

// TODO - TEST, init to 0 otherwise (see above).

PWMBase->SM[0].VAL2 = (uint16_t)(-(M1_PWM_MODULO/4));

PWMBase->SM[1].VAL2 = (uint16_t)(-(M1_PWM_MODULO/4));

PWMBase->SM[2].VAL2 = (uint16_t)(-(M1_PWM_MODULO/4));

PWMBase->SM[3].VAL2 = (uint16_t)(-(M1_PWM_MODULO/4));

PWMBase->SM[0].VAL3 = (uint16_t)((M1_PWM_MODULO/4));

PWMBase->SM[1].VAL3 = (uint16_t)((M1_PWM_MODULO/4));

PWMBase->SM[2].VAL3 = (uint16_t)((M1_PWM_MODULO/4));

PWMBase->SM[3].VAL3 = (uint16_t)((M1_PWM_MODULO/4));

/* PWM0 module 0 trigger on VAL4 enabled for ADC synchronization */

PWMBase->SM[0].VAL4 = PWM_VAL4_VAL4((uint16_t)((-(M1_PWM_MODULO / 2))));

/*xx_xxx1b - PWM_OUT_TRIG0 will set when the counter value matches the VAL0 value */

PWMBase->SM[0].TCTRL |= PWM_TCTRL_OUT_TRIG_EN(0b010001);//PWAOT0 PWBOT1 TRGFRQ OUT_TRIG_EN

PWMBase->SM[0].INTEN = (0x1UL << 12UL);//RIE,Reload Interrupt Enable?

/* set deadtime (number of Fast Peripheral Clocks)

DTCNT0,1 = T_dead * f_fpc = 1.0us * 150MHz = 150 */

PWMBase->SM[0].DTCNT0 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

PWMBase->SM[1].DTCNT0 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

PWMBase->SM[2].DTCNT0 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

PWMBase->SM[3].DTCNT0 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

PWMBase->SM[0].DTCNT1 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

PWMBase->SM[1].DTCNT1 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

PWMBase->SM[2].DTCNT1 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

PWMBase->SM[3].DTCNT1 = ((M1_PWM_DEADTIME * (MCU_CLOCK_FREQ / 1000000U)) / 1000U);

/* Control Register */

PWMBase->SM[0].CTRL = ( 0x0UL << 12UL )? //LDFQ

|( 0x0UL << 11UL )? //HALF

|( 0x1UL << 10UL )? //FULL

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

/* Control Register */

PWMBase->SM[1].CTRL = ( 0x0UL << 12UL )? //LDFQ

|( 0x0UL << 11UL )? //HALF

|( 0x1UL << 10UL )? //FULL

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

/* Control Register */

PWMBase->SM[2].CTRL = ( 0x0UL << 12UL )? //LDFQ

|( 0x0UL << 11UL )? //HALF

|( 0x1UL << 10UL )? //FULL

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

/* Control Register */

PWMBase->SM[3].CTRL = ( 0x0UL << 12UL )? //LDFQ

|( 0x0UL << 11UL )? //HALF

|( 0x1UL << 10UL )? //FULL

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL <

|( 0x0UL << 0UL ); //DBLEN

/* Fault0 trigger, Disable X,Disable B,Disable A */

// PWMBase->SM[0].DISMAP[0] = 0xF111U;

// PWMBase->SM[1].DISMAP[0] = 0xF111U;

// PWMBase->SM[2].DISMAP[0] = 0xF111U;

// PWMBase->SM[3].DISMAP[0] = 0xF111U;

PWMBase->SM[0].DISMAP[0] = 0;

PWMBase->SM[1].DISMAP[0] = 0;

PWMBase->SM[2].DISMAP[0] = 0;

PWMBase->SM[3].DISMAP[0] = 0;

/* PWMs are re-enabled at PWM full cycle / half cycle */

PWMBase->FSTS = (PWMBase->FSTS & ~(PWM_FSTS_FFULL_MASK | PWM_FSTS_FHALF_MASK)) | PWM_FSTS_FFULL(0x1) | PWM_FSTS_FHALF(0x1);

/* PWM fault filter - 3 Fast periph. clocks sample rate, 5 agreeing samples to activate */

PWMBase->FFILT = (PWMBase->FFILT & ~PWM_FFILT_FILT_PER_MASK) | PWM_FFILT_FILT_PER(2);

/* All interrupts disabled, safe manual fault clearing, inversed logic (trigger level = high) */

PWMBase->FCTRL &= ~(PWM_FCTRL_FLVL_MASK | PWM_FCTRL_FAUTO_MASK | PWM_FCTRL_FSAFE_MASK | PWM_FCTRL_FIE_MASK); /* clear FCTRL register prior further settings */

PWMBase->FCTRL |= PWM_FCTRL_FLVL(0x1U);

PWMBase->FCTRL |= PWM_FCTRL_FAUTO(0x1U);

PWMBase->FCTRL |= PWM_FCTRL_FSAFE(0x1U);

PWMBase->FCTRL |= PWM_FCTRL_FIE(0U); /* FAULT 0 & FAULT 1 - Interrupt disable */

/* Clear all fault flags */

PWMBase->FSTS = (PWMBase->FSTS & ~PWM_FSTS_FFLAG_MASK) | PWM_FSTS_FFLAG(0xF);

PWMBase->MASK = 0;//UPDATE_MASK MASKA MASKB MASKx

PWMBase->SWCOUT = 0;

PWMBase->DTSRCSEL = 0;//

PWMBase->SM[0].FRCTRL |= ((0UL << 4UL) | (0UL << 2UL) | (0UL << 1UL)) ;//FRAC45_EN 4,FRAC23_EN 2,FRAC1_EN1

PWMBase->SM[0].FRACVAL2 = 0 << 11UL;

PWMBase->SM[0].FRACVAL3 = 0 << 11UL;

PWMBase->SM[1].FRACVAL2 = 0 << 11UL;

PWMBase->SM[1].FRACVAL3 = 0 << 11UL;

PWMBase->SM[2].FRACVAL2 = 0 << 11UL;

PWMBase->SM[2].FRACVAL3 = 0 << 11UL;

PWMBase->SM[3].FRACVAL2 = 0 << 11UL;

PWMBase->SM[3].FRACVAL3 = 0 << 11UL;

PWMBase->SM[0].CTRL2 = ( 0x0UL << 15UL ) //DBGEN

|( 0x0UL << 14UL ) //WAITEN,Sleep Enable

|( 0x0UL << 13UL ) //INDEP,0b - PWM_A and PWM_B form a complementary PWM pair.

|( 0x0UL << 12UL ) //PWM23_INIT,

|( 0x0UL << 11UL ) //PWM45_INIT

|( 0x0UL << 10UL ) //PWMX_INIT

|( 0x0UL << 8UL ) //INIT_SEL,counter load init value,Local sync,Master reload,Master sync,EXT_SYNC

|( 0x0UL << 7UL ) //FRCEN

|( 0x0UL << 6UL ) //FORCE

|( 0x0UL << 3UL ) //FORCE_SEL,local force,master force,local reload,master reload,local sync,master sync,external force,external sync

|( 0x0UL << 2UL ) //RELOAD_SEL,0b - The local RELOAD signal

|( 0x0UL << 0UL ); //CLK_SEL,

//00b - The IPBus clock

//01b - EXT_CLK

//10b - Submodule 0’s clock (AUX_CLK)

PWMBase->SM[1].CTRL2 = ( 0x0UL << 15UL ) //DBGEN

|( 0x0UL << 14UL ) //WAITEN,Sleep Enable

|( 0x0UL << 13UL ) //INDEP,0b - PWM_A and PWM_B form a complementary PWM pair.

|( 0x0UL << 12UL ) //PWM23_INIT,

|( 0x0UL << 11UL ) //PWM45_INIT

|( 0x0UL << 10UL ) //PWMX_INIT

|( 0x2UL << 8UL ) //INIT_SEL,counter load init value,Local sync,Master reload,Master sync,EXT_SYNC

|( 0x0UL << 7UL ) //FRCEN

|( 0x0UL << 6UL ) //FORCE

|( 0x1UL << 3UL ) //FORCE_SEL,local force,master force,local reload,master reload,local sync,master sync,external force,external sync

|( 0x1UL << 2UL ) //RELOAD_SEL,1b - The master RELOAD signal

|( 0x0UL << 0UL ); //CLK_SEL,

//00b - The IPBus clock

//01b - EXT_CLK

//10b - Submodule 0’s clock (AUX_CLK)

PWMBase->SM[2].CTRL2 = ( 0x0UL << 15UL ) //DBGEN

|( 0x0UL << 14UL ) //WAITEN,Sleep Enable

|( 0x0UL << 13UL ) //INDEP,0b - PWM_A and PWM_B form a complementary PWM pair.

|( 0x0UL << 12UL ) //PWM23_INIT,

|( 0x0UL << 11UL ) //PWM45_INIT

|( 0x0UL << 10UL ) //PWMX_INIT

|( 0x2UL << 8UL ) //INIT_SEL,counter load init value,Local sync,Master reload,Master sync,EXT_SYNC

|( 0x0UL << 7UL ) //FRCEN

|( 0x0UL << 6UL ) //FORCE

|( 0x1UL << 3UL ) //FORCE_SEL,local force,master force,local reload,master reload,local sync,master sync,external force,external sync

|( 0x1UL << 2UL ) //RELOAD_SEL,1b - The master RELOAD signal

|( 0x0UL << 0UL ); //CLK_SEL,

//00b - The IPBus clock

//01b - EXT_CLK

//10b - Submodule 0’s clock (AUX_CLK)

PWMBase->SM[3].CTRL2 = ( 0x0UL << 15UL ) //DBGEN

|( 0x0UL << 14UL ) //WAITEN,Sleep Enable

|( 0x0UL << 13UL ) //INDEP,0b - PWM_A and PWM_B form a complementary PWM pair.

|( 0x0UL << 12UL ) //PWM23_INIT,

|( 0x0UL << 11UL ) //PWM45_INIT

|( 0x0UL << 10UL ) //PWMX_INIT

|( 0x2UL << 8UL ) //INIT_SEL,counter load init value,Local sync,Master reload,Master sync,EXT_SYNC

|( 0x0UL << 7UL ) //FRCEN

|( 0x0UL << 6UL ) //FORCE

|( 0x1UL << 3UL ) //FORCE_SEL,local force,master force,local reload,master reload,local sync,master sync,external force,external sync

|( 0x1UL << 2UL ) //RELOAD_SEL,1b - The master RELOAD signal

|( 0x0UL << 0UL ); //CLK_SEL,

//00b - The IPBus clock

//01b - EXT_CLK

//10b - Submodule 0’s clock (AUX_CLK)

/* Start PWMs (set load OK flags and run - we need to trigger the ADC) */

PWMBase->MCTRL = (PWMBase->MCTRL & ~PWM_MCTRL_CLDOK_MASK) | PWM_MCTRL_CLDOK(0xF);

PWMBase->MCTRL = (PWMBase->MCTRL & ~PWM_MCTRL_LDOK_MASK) | PWM_MCTRL_LDOK(0xF);

PWMBase->MCTRL = (PWMBase->MCTRL & ~PWM_MCTRL_RUN_MASK) | PWM_MCTRL_RUN(0xF);

//PWMBase->OUTEN = 0xFF0;//0xFF0,11-8,PWMA3_EN ~ PWMA0_EN, 7-4 PWMB3_EN ~ PWMB0_EN, 3-0 PWMX3_EN ~ PWMX0_EN

/* Enable & setup interrupt from PWMA */

NVIC_SetPriority(FLEXPWM0_RELOAD0_IRQn, 0U);

NVIC_EnableIRQ(FLEXPWM0_RELOAD0_IRQn);

}

6. 開發(fā)板測(cè)試與波形

本文使用 NXP 原廠的 LPC55S36-EVK 測(cè)試,生成的 6 路 PWM 對(duì)應(yīng)原理圖中的 PWM_AT、PWM_AB、 PWM_BT、PWM_BB、 PWM_CT、PWM_CB,如下圖所示:

0fab957c-92d4-11ed-ad0d-dac502259ad0.png

示波器探頭連接開發(fā)板 J10 插件 15 與 13 腳,如下圖中紅框部分如圖所示:

0fb6b952-92d4-11ed-ad0d-dac502259ad0.png

示波器黃色探頭為 PWM_AT,藍(lán)色為 PWM_AB,測(cè)量為 40KHz PWM,死區(qū) 1us,與設(shè)置的一致。

0fcd758e-92d4-11ed-ad0d-dac502259ad0.png0fdd3d16-92d4-11ed-ad0d-dac502259ad0.png

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • PWM
    PWM
    +關(guān)注

    關(guān)注

    114

    文章

    5197

    瀏覽量

    214546
  • 電機(jī)
    +關(guān)注

    關(guān)注

    142

    文章

    9080

    瀏覽量

    146146
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    PWM信號(hào)生成方法 PWM調(diào)制原理講解

    PWM(脈沖寬度調(diào)制,Pulse Width Modulation)是一種重要的模擬信號(hào)電平數(shù)字編碼方法,在電子技術(shù)和控制領(lǐng)域具有廣泛應(yīng)用。以下是對(duì)PWM信號(hào)生成方法和
    的頭像 發(fā)表于 11-28 16:34 ?1891次閱讀

    PWM輸出配置方法

    從上節(jié)課的定時(shí)器分類圖中我們了解到,互補(bǔ)輸出是高級(jí)定時(shí)器(TIM1、TIM8)所獨(dú)有的,它可以輸出兩互補(bǔ)信號(hào)。而在本節(jié)課中我們將通過一個(gè)簡單的例程去介紹如何配置互補(bǔ)
    的頭像 發(fā)表于 11-04 09:44 ?1200次閱讀
    <b class='flag-5'>PWM</b>輸出配置方法

    PWM死區(qū)的定義和作用

    PWM(Pulse Width Modulation,脈寬調(diào)制)死區(qū)是一個(gè)在PWM控制系統(tǒng)中至關(guān)重要的概念,特別是在涉及電力電子設(shè)備和電機(jī)控制的應(yīng)用中。以下是對(duì)PWM
    的頭像 發(fā)表于 10-16 11:19 ?2880次閱讀

    TC387 MCAL如何配置互補(bǔ)PWM

    請(qǐng)問有用MCAL配過三互補(bǔ)PWM的輸出嗎?研究了好幾天了,沒找到MCAL配置互補(bǔ)PWM的地方
    發(fā)表于 07-03 07:20

    STM32H7的HRTIM可以生成12PWM嗎?

    STM32H7的HRTIM可以生成12PWM嗎,想做數(shù)字電源,控制三相NPC逆變器
    發(fā)表于 05-23 07:19

    求助,關(guān)于編碼盤與PWM的疑問求解

    55;//高/低電平有效(CCiP),使能PWM輸出(CCiE)使能互補(bǔ)輸出 (CCiNE),互補(bǔ)高/低電平有效(CCiNP) TIM1_CCMR1 = 0X6C; TIM1_CC
    發(fā)表于 04-30 07:12

    STM8S003 TIM1高級(jí)定時(shí)器輸出互補(bǔ)死區(qū)方波怎么解決?

    TIM1高級(jí)定時(shí)器輸出死區(qū)方波已經(jīng)實(shí)現(xiàn),但是我的設(shè)備是上下管都為高的時(shí)候,才是關(guān)閉,和正常的低電平死區(qū)不太一樣,大家?guī)臀铱匆幌鹿?,謝謝了,我要實(shí)現(xiàn)右側(cè)高電平死區(qū),
    發(fā)表于 04-30 06:52

    采用STM32F030K6T6互補(bǔ)PWM輸出時(shí),互補(bǔ)通道沒有波形輸出是為什么?

    各路大神指教,采用STM32F030K6T6互補(bǔ)PWM輸出時(shí),配置什么的都檢查了基本沒問題,但是只有主通道有輸出,互補(bǔ)通道沒有波形輸出,請(qǐng)教一下是軟件問題還是這款I(lǐng)C不支持
    發(fā)表于 04-22 07:50

    stm32控制三相全橋,怎么使pwm移相120度?

    我想用stm32f控制一個(gè)三相電機(jī),也就是控制一個(gè)三相全橋,現(xiàn)在已經(jīng)能實(shí)現(xiàn)stm32輸出6互補(bǔ)死區(qū)
    發(fā)表于 04-22 07:09

    用STM32F051 TIM17產(chǎn)生兩死區(qū)互補(bǔ)pwm,互補(bǔ)pwm出來了,但死區(qū)沒有,為什么?

    我想用STM32F051 TIM17產(chǎn)生兩死區(qū)互補(bǔ)pwm,互補(bǔ)
    發(fā)表于 04-18 06:21

    集成FET的3-V-6-V輸入、6-A輸出同步降壓PWM切換器TPS5461x數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《集成FET的3-V-6-V輸入、6-A輸出同步降壓PWM切換器TPS5461x數(shù)據(jù)表.pdf》資料免費(fèi)下載
    發(fā)表于 04-03 14:51 ?6次下載
    <b class='flag-5'>帶</b>集成FET的3-V-<b class='flag-5'>6</b>-V輸入、<b class='flag-5'>6</b>-A輸出同步降壓<b class='flag-5'>PWM</b>切換器TPS5461<b class='flag-5'>x</b>數(shù)據(jù)表

    PWM控制信號(hào)中的死區(qū)time對(duì)逆變器的影響

    PWM控制信號(hào)中的死區(qū)time對(duì)逆變器的影響 PWM是一種常見的電子控制技術(shù),逆變器作為一種重要的電力電子設(shè)備,通常使用PWM控制信號(hào)來控制
    的頭像 發(fā)表于 02-18 10:49 ?2105次閱讀

    關(guān)于TC264死區(qū)時(shí)間的疑問求解

    各位,我配置了一版寄存器版本的CCU6初始化程序,生成6中心沿對(duì)齊的PWM用于控制PWSM,其中包含了
    發(fā)表于 02-18 08:57

    TC275 MCAL如何用EB配置雙互補(bǔ)PWM

    TC275,MCAL如何用EB配置雙互補(bǔ)PWM,研究了好幾天,一直不知道怎么配置互補(bǔ)pwm.同時(shí)還有
    發(fā)表于 02-02 08:09

    GTM怎么輸出指定脈沖數(shù)的PWM呢?

    我們都知道GTM可生成獨(dú)立的可調(diào)占空比可調(diào)周期PWM,或死區(qū)互補(bǔ)PWM,那么怎么輸出指定脈沖
    發(fā)表于 01-26 08:08