來源:古月居
前言
KNN(k-Nearest Neighbors)思想簡單,應用的數(shù)學知識幾乎為0,所以作為機器學習的入門非常實用、可以解釋機器學習算法使用過程中的很多細節(jié)問題。能夠更加完整地刻畫機器學習應用的流程。
首先大致介紹一下KNN的思想,假設我們現(xiàn)在有兩類數(shù)據(jù)集,一類是紅色的點表示,另一類用藍色的點表示,這兩類點就作為我們的訓練數(shù)據(jù)集,當有一個新的數(shù)據(jù)綠色的點,那么我們該怎么給這個綠色的點進行分類呢?
一般情況下,我們需要先指定一個k,當一個新的數(shù)據(jù)集來臨時,我們首先計算這個新的數(shù)據(jù)跟訓練集中的每一個數(shù)據(jù)的距離,一般使用歐氏距離。
然后從中選出距離最近的k個點,這個k一般選取為奇數(shù),方便后面投票決策。在k個點中根據(jù)最多的確定新的數(shù)據(jù)屬于哪一類。
KNN基礎
1.先創(chuàng)建好數(shù)據(jù)集x_train, y_train,和一個新的數(shù)據(jù)x_new, 并使用matplot將其可視化出來。
import numpy as np import matplotlib.pyplot as plt raw_data_x = [[3.3935, 2.3313], [3.1101, 1.7815], [1.3438, 3.3684], [3.5823, 4.6792], [2.2804, 2.8670], [7.4234, 4.6965], [5.7451, 3.5340], [9.1722, 2.5111], [7.7928, 3.4241], [7.9398, 0.7916]] raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] x_train = np.array(raw_data_x) y_train = np.array(raw_data_y) x_new = np.array([8.0936, 3.3657]) plt.scatter(x_train[y_train==0,0], x_train[y_train==0,1], color='g') plt.scatter(x_train[y_train==1,0], x_train[y_train==1,1], color='r') plt.scatter(x_new[0], x_new[1], color='b') plt.show()
1.knn過程
2.計算距離
from math import sqrt distance = [] for x in x_train: d = sqrt(np.sum((x_new - x) ** 2)) distance.append(d) # 其實上面這些代碼用一行就可以搞定 # distances = [sqrt(np.sum((x_new - x) ** 2)) for x in x_train]
輸出結(jié)果:
[10.888422144185997, 11.825242797930196, 15.18734646375067, 11.660703691887552, 12.89974598548359, 12.707715895864213, 9.398411207752083, 15.62480440229573, 12.345673749536719, 14.394770082568183]
將距離進行排序,返回的是排序之后的索引位置
nearsest = np.argsort(distances)
輸出結(jié)果:array([6, 0, 3, 1, 8, 5, 4, 9, 2, 7], dtype=int64)
取k個點,假設k=5
k = 5 topk_y = [y_train[i] for i in nearest[:k]] topk_y
輸出結(jié)果:[1, 0, 0, 0, 1]
根據(jù)輸出結(jié)果我們可以發(fā)現(xiàn),新來的數(shù)據(jù)距離最近的5個點,有三個點屬于第一類,有兩個點屬于第二類,根據(jù)少數(shù)服從多數(shù)原則,新來的數(shù)據(jù)就屬于第一類!
投票
from collections import Counter Counter(topk_y)
輸出結(jié)果:Counter({1: 2, 0: 3})
votes = Counter(topk_y) votes.most_common(1) y_new = votes.most_common(1)[0][0]
輸出結(jié)果:0
這樣,我們就完成了一個基本的knn!
自己寫一個knn函數(shù)
knn是一個不需要訓練過程的機器學習算法。其數(shù)據(jù)集可以近似看成一個模型。
import numpy as np from math import sqrt from collections import Counter def kNN_classifier(k, x_train, y_train, x_new): assert 1 <= k <= x_train.shape[0], "k must be valid" ? ?assert x_train.shape[0] == y_train.shape[0], "the size of x_train must be equal to the size of y_train" ? ?assert x_train.shape[1] == x_new.shape[0], "the feature number of x_new must be equal to x_train" ? ?distances = [sqrt(np.sum((x_new - x) ** 2)) for x in x_train] ? ?nearest = np.argsort(distances) ? ?topk_y = [y_train[i] for i in nearest[:k]] ? ?votes = Counter(topk_y) ? ?return votes.most_common(1)[0][0]
測試一下:
raw_data_x = [[3.3935, 2.3313], [3.1101, 1.7815], [1.3438, 3.3684], [3.5823, 4.6792], [2.2804, 2.8670], [7.4234, 4.6965], [5.7451, 3.5340], [9.1722, 2.5111], [7.7928, 3.4241], [7.9398, 0.7916]] raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] x_train = np.array(raw_data_x) y_train = np.array(raw_data_y) x_new = np.array([8.0936, 3.3657]) y_new = kNN_classifier(5, x_train, y_train, x_new) print(y_new)
使用sklearn中的KNN
from sklearn.neighbors import KNeighborsClassifier import numpy as np raw_data_x = [[3.3935, 2.3313], [3.1101, 1.7815], [1.3438, 3.3684], [3.5823, 4.6792], [2.2804, 2.8670], [7.4234, 4.6965], [5.7451, 3.5340], [9.1722, 2.5111], [7.7928, 3.4241], [7.9398, 0.7916]] raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] x_train = np.array(raw_data_x) y_train = np.array(raw_data_y) x_new = np.array([8.0936, 3.3657]) knn_classifier = KNeighborsClassifier(n_neighbors=5) knn_classifier.fit(x_train, y_train) y_new = knn_classifier.predict(x_new.reshape(1, -1)) print(y_new[0])
自己寫一個面向?qū)ο蟮腒NN
import numpy as np from math import sqrt from collections import Counter class KNNClassifier(): def __init__(self, k): assert 1 <= k, "k must be valid" ? ? ? ?self.k = k ? ? ? ?self._x_train = None ? ? ? ?self._y_train = None ? ?def fit(self, x_train, y_train): ? ? ? ?assert x_train.shape[0] == y_train.shape[0], ? ? ? ?"the size of x_train must be equal to the size of y_train" ? ? ? ?assert self.k <= x_train.shape[0], ? ? ? ? "the size of x_train must be at least k" ? ? ? ?self._x_train = x_train ? ? ? ?self._y_train = y_train ? ? ? ?return self ? ?def predict(self, x_new): ? ? ? ?x_new = x_new.reshape(1, -1) ? ? ? ?assert self._x_train is not None and self._y_train is not None, ? ? ? ?"must fit before predict" ? ? ? ?assert x_new.shape[1] == self._x_train.shape[1], ? ? ? ?"the feature number of x must be equal to x_train" ? ? ? ?y_new = [self._predict(x) for x in x_new] ? ? ? ?return np.array(y_new) ? ?def _predict(self, x): ? ? ? ?assert x.shape[0] == self._x_train.shape[1], ? ? ? ?"the feature number of x must be equal to x_train" ? ? ? ?distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._x_train] ? ? ? ?nearest = np.argsort(distances) ? ? ? ?topk_y = [self._y_train[i] for i in nearest[:self.k]] ? ? ? ?votes = Counter(topk_y) ? ? ? ?return votes.most_common(1)[0][0] ? ?def __repr__(self): ? ? ? ?return "KNN(k=%d)" % self.k
測試一下:
raw_data_x = [[3.3935, 2.3313], [3.1101, 1.7815], [1.3438, 3.3684], [3.5823, 4.6792], [2.2804, 2.8670], [7.4234, 4.6965], [5.7451, 3.5340], [9.1722, 2.5111], [7.7928, 3.4241], [7.9398, 0.7916]] raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] x_train = np.array(raw_data_x) y_train = np.array(raw_data_y) x_new = np.array([8.0936, 3.3657]) knn_clf = KNNClassifier(6) knn_clf.fit(x_train, y_train) y_new = knn_clf.predict(x_new) print(y_new[0])
分割數(shù)據(jù)集
import numpy as np from sklearn import datasets def train_test_split(x, y, test_ratio=0.2, seed=None): assert x.shape[0] == y.shape[0], "the size of x must be equal to the size of y" assert 0.0 <= test_ratio <= 1.0, "test_ratio must be valid" ? ?if seed: ? ? ? ?np.random.seed(seed) ? ?shuffle_idx = np.random.permutation(len(x)) ? ?test_size = int(len(x) * test_ratio) ? ?test_idx = shuffle_idx[:test_size] ? ?train_idx = shuffle_idx[test_size:] ? ?x_train = x[train_idx] ? ?y_train = y[train_idx] ? ?x_test = x[test_idx] ? ?y_test = y[test_idx] ? ?return x_train, y_train, x_test, y_test
sklearn中鳶尾花數(shù)據(jù)測試KNN
import numpy as np from sklearn import datasets from knn_clf import KNNClassifier iris = datasets.load_iris() x = iris.data y = iris.target x_train, y_train, x_test, y_test = train_test_split(x, y) my_knn_clf = KNNClassifier(k=3) my_knn_clf.fit(x_train, y_train) y_predict = my_knn_clf.predict(x_test) print(sum(y_predict == y_test)) print(sum(y_predict == y_test) / len(y_test)) # 也可以使用sklearn中自帶的數(shù)據(jù)集拆分方法 from sklearn.model_selection import train_test_split import numpy as np from sklearn import datasets from knn_clf import KNNClassifier iris = datasets.load_iris() x = iris.data y = iris.target x_train, y_train, x_test, y_test = train_test_split(x, y, test_size=0.2, random_state=666) my_knn_clf = KNNClassifier(k=3) my_knn_clf.fit(x_train, y_train) y_predict = my_knn_clf.predict(x_test) print(sum(y_predict == y_test)) print(sum(y_predict == y_test) / len(y_test))
sklearn中手寫數(shù)字數(shù)據(jù)集測試KNN
首先,先來了解一下手寫數(shù)字數(shù)據(jù)集。
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets digits = datasets.load_digits() digits.keys() print(digits.DESCR) y.shape digits.target_names y[:100] x[:10] some_digit = x[666] y[666] some_digit_image = some_digit.reshape(8, 8) plt.imshow(some_digit_image, cmap=plt.cm.binary) plt.show()
接下來,就開始動手試試。
from sklearn import datasets from shuffle_dataset import train_test_split from knn_clf import KNNClassifier digits = datasets.load_digits() x = digits.data y = digits.target x_train, y_train, x_test, y_test = train_test_split(x, y, test_ratio=0.2) my_knn_clf = KNNClassifier(k=3) my_knn_clf.fit(x_train, y_train) y_predict = my_knn_clf.predict(x_test) print(sum(y_predict == y_test) / len(y_test))
把求acc封裝成一個函數(shù),方便調(diào)用。
def accuracy_score(y_true, y_predict): assert y_true.shape[0] == y_predict.shape[0], "the size of y_true must be equal to the size of y_predict" return sum(y_true == y_predict) / len(y_true)
接下來把它封裝到KNNClassifier的類中。
import numpy as np from math import sqrt from collections import Counter from metrics import accuracy_score class KNNClassifier(): def __init__(self, k): assert 1 <= k, "k must be valid" ? ? ? ?self.k = k ? ? ? ?self._x_train = None ? ? ? ?self._y_train = None ? ?def fit(self, x_train, y_train): ? ? ? ?assert x_train.shape[0] == y_train.shape[0], ? ? ? ?"the size of x_train must be equal to the size of y_train" ? ? ? ?assert self.k <= x_train.shape[0], ? ? ? ?"the size of x_train must be at least k" ? ? ? ?self._x_train = x_train ? ? ? ?self._y_train = y_train ? ? ? ?return self ? ?def predict(self, x_new): ? ? ? ?# x_new = x_new.reshape(1, -1) ? ? ? ?assert self._x_train is not None and self._y_train is not None, ? ? ? ?"must fit before predict" ? ? ? ?assert x_new.shape[1] == self._x_train.shape[1], ? ? ? ?"the feature number of x must be equal to x_train" ? ? ? ?y_new = [self._predict(x) for x in x_new] ? ? ? ?return np.array(y_new) ? ?def _predict(self, x): ? ? ? ?assert x.shape[0] == self._x_train.shape[1], ? ? ? ?"the feature number of x must be equal to x_train" ? ? ? ?distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._x_train] ? ? ? ?nearest = np.argsort(distances) ? ? ? ?topk_y = [self._y_train[i] for i in nearest[:self.k]] ? ? ? ?votes = Counter(topk_y) ? ? ? ?return votes.most_common(1)[0][0] ? ?def score(self, x_test, y_test): ? ? ? ?y_predict = self.predict(x_test) ? ? ? ?return accuracy_score(y_test, y_predict) ? ?def __repr__(self): ? ? ? ?return "KNN(k=%d)" % self.k
其實,在sklearn中這些都已經(jīng)封裝好了。
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier digits = datasets.load_digits() x = digits.data y = digits.target x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) knn_classifier = KNeighborsClassifier(n_neighbors=3) knn_classifier.fit(x_train, y_train) knn_classifier.score(x_test, y_test)
超參數(shù)
k
在knn中的超參數(shù)k何時最優(yōu)?
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier digits = datasets.load_digits() x = digits.data y = digits.target x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) best_score = 0.0 best_k = -1 for k in range(1, 11): knn_clf = KNeighborsClassifier(n_neighbors=k) knn_clf.fit(x_train, y_train) score = knn_clf.score(x_test, y_test) if score > best_score: best_k = k best_score = score print("best k=", best_k) print("best score=", best_score)
投票方式
上面這張圖,綠色的球最近的三顆球分別是紅色的1號,紫色的3號和藍色的4號。如果只考慮綠色的k個近鄰中多數(shù)服從少數(shù),目前來說就是平票。
即使不是平票,紅色也是距離綠色最近。此時我們就可以考慮給他們加個權重。一般使用距離的倒數(shù)作為權重。假設距離分別為1、 3、 4
紅球:1 紫+藍:1/3 + 1/4 = 7/12
這兩者加起來都沒有紅色的權重大,因此最終將這顆綠球歸為紅色類別。這樣能有效解決平票問題。 因此,這也算knn的一個超參數(shù)。
其實這個在sklearn封裝的knn中已經(jīng)考慮到了這個問題。在KNeighborsClassifier(n_neighbors=k,weights=?)
還有一個參數(shù)weights,一般有兩種:uniform、distance。
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier digits = datasets.load_digits() x = digits.data y = digits.target x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) best_method = "" best_score = 0.0 best_k = -1 for method in["uniform", "distance"]: for k in range(1, 11): knn_clf = KNeighborsClassifier(n_neighbors=k, weights=method) knn_clf.fit(x_train, y_train) score = knn_clf.score(x_test, y_test) if score > best_score: best_method = method best_k = k best_score = score print("best_method=", best_method) print("best k=", best_k) print("best score=", best_score)
p
如果使用距離,那么有很多種距離可以使用,歐氏距離、曼哈頓距離、明可夫斯基距離。
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier digits = datasets.load_digits() x = digits.data y = digits.target x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) best_p = -1 best_score = 0.0 best_k = -1 for p in range(1, 6): for k in range(1, 11): knn_clf = KNeighborsClassifier(n_neighbors=k, weights="distance", p=p) knn_clf.fit(x_train, y_train) score = knn_clf.score(x_test, y_test) if score > best_score: best_p = p best_k = k best_score = score print("best_p=", best_p) print("best k=", best_k) print("best score=", best_score)
-
算法
+關注
關注
23文章
4612瀏覽量
92890 -
代碼
+關注
關注
30文章
4788瀏覽量
68611 -
機器學習
+關注
關注
66文章
8418瀏覽量
132630 -
數(shù)據(jù)集
+關注
關注
4文章
1208瀏覽量
24701
發(fā)布評論請先 登錄
相關推薦
評論