0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

PyTorch教程-19.3. 異步隨機(jī)搜索

jf_pJlTbmA9 ? 來源:PyTorch ? 作者:PyTorch ? 2023-06-05 15:44 ? 次閱讀

正如我們在前面的第 19.2 節(jié)中看到的那樣,由于超參數(shù)配置的評估代價高昂,我們可能不得不等待數(shù)小時甚至數(shù)天才能在隨機(jī)搜索返回良好的超參數(shù)配置之前。在實(shí)踐中,我們經(jīng)常訪問資源池,例如同一臺機(jī)器上的多個 GPU 或具有單個 GPU 的多臺機(jī)器。這就引出了一個問題:我們?nèi)绾斡行У胤植茧S機(jī)搜索?

通常,我們區(qū)分同步和異步并行超參數(shù)優(yōu)化(見圖19.3.1)。在同步設(shè)置中,我們等待所有并發(fā)運(yùn)行的試驗(yàn)完成,然后再開始下一批??紤]包含超參數(shù)的配置空間,例如過濾器的數(shù)量或深度神經(jīng)網(wǎng)絡(luò)的層數(shù)。包含更多過濾器層數(shù)的超參數(shù)配置自然會花費(fèi)更多時間完成,并且同一批次中的所有其他試驗(yàn)都必須在同步點(diǎn)(圖 19.3.1 中的灰色區(qū)域)等待,然后我們才能 繼續(xù)優(yōu)化過程。

在異步設(shè)置中,我們會在資源可用時立即安排新的試驗(yàn)。這將以最佳方式利用我們的資源,因?yàn)槲覀兛梢员苊馊魏瓮介_銷。對于隨機(jī)搜索,每個新的超參數(shù)配置都是獨(dú)立于所有其他配置選擇的,特別是沒有利用任何先前評估的觀察結(jié)果。這意味著我們可以簡單地異步并行化隨機(jī)搜索。這對于根據(jù)先前的觀察做出決定的更復(fù)雜的方法來說并不是直截了當(dāng)?shù)模▍⒁?第 19.5 節(jié))。雖然我們需要訪問比順序設(shè)置更多的資源,但異步隨機(jī)搜索表現(xiàn)出線性加速,因?yàn)檫_(dá)到了一定的性能K如果K試驗(yàn)可以并行進(jìn)行。

poYBAGR9PW-AdScKAACpELBjcYw139.svg

圖 19.3.1同步或異步分配超參數(shù)優(yōu)化過程。與順序設(shè)置相比,我們可以減少整體掛鐘時間,同時保持總計(jì)算量不變。在掉隊(duì)的情況下,同步調(diào)度可能會導(dǎo)致工人閑置。

在本筆記本中,我們將研究異步隨機(jī)搜索,其中試驗(yàn)在同一臺機(jī)器上的多個 Python 進(jìn)程中執(zhí)行。分布式作業(yè)調(diào)度和執(zhí)行很難從頭開始實(shí)現(xiàn)。我們將使用Syne Tune (Salinas等人,2022 年),它為我們提供了一個簡單的異步 HPO 接口。Syne Tune 旨在與不同的執(zhí)行后端一起運(yùn)行,歡迎感興趣的讀者研究其簡單的 API,以了解有關(guān)分布式 HPO 的更多信息。

import logging
from d2l import torch as d2l

logging.basicConfig(level=logging.INFO)
from syne_tune import StoppingCriterion, Tuner
from syne_tune.backend.python_backend import PythonBackend
from syne_tune.config_space import loguniform, randint
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import RandomSearch

INFO:root:SageMakerBackend is not imported since dependencies are missing. You can install them with
  pip install 'syne-tune[extra]'
AWS dependencies are not imported since dependencies are missing. You can install them with
  pip install 'syne-tune[aws]'
or (for everything)
  pip install 'syne-tune[extra]'
AWS dependencies are not imported since dependencies are missing. You can install them with
  pip install 'syne-tune[aws]'
or (for everything)
  pip install 'syne-tune[extra]'
INFO:root:Ray Tune schedulers and searchers are not imported since dependencies are missing. You can install them with
  pip install 'syne-tune[raytune]'
or (for everything)
  pip install 'syne-tune[extra]'

19.3.1。目標(biāo)函數(shù)

首先,我們必須定義一個新的目標(biāo)函數(shù),以便它現(xiàn)在通過回調(diào)將性能返回給 Syne Tune report。

def hpo_objective_lenet_synetune(learning_rate, batch_size, max_epochs):
  from syne_tune import Reporter
  from d2l import torch as d2l

  model = d2l.LeNet(lr=learning_rate, num_classes=10)
  trainer = d2l.HPOTrainer(max_epochs=1, num_gpus=1)
  data = d2l.FashionMNIST(batch_size=batch_size)
  model.apply_init([next(iter(data.get_dataloader(True)))[0]], d2l.init_cnn)
  report = Reporter()
  for epoch in range(1, max_epochs + 1):
    if epoch == 1:
      # Initialize the state of Trainer
      trainer.fit(model=model, data=data)
    else:
      trainer.fit_epoch()
    validation_error = trainer.validation_error().cpu().detach().numpy()
    report(epoch=epoch, validation_error=float(validation_error))

請注意,PythonBackendSyne Tune 需要在函數(shù)定義中導(dǎo)入依賴項(xiàng)。

19.3.2。異步調(diào)度器

首先,我們定義同時評估試驗(yàn)的工人數(shù)量。我們還需要通過定義總掛鐘時間的上限來指定我們想要運(yùn)行隨機(jī)搜索的時間。

n_workers = 2 # Needs to be <= the number of available GPUs

max_wallclock_time = 12 * 60 # 12 minutes

接下來,我們說明要優(yōu)化的指標(biāo)以及我們是要最小化還是最大化該指標(biāo)。即,metric需要對應(yīng)傳遞給回調(diào)的參數(shù)名稱report。

mode = "min"
metric = "validation_error"

我們使用前面示例中的配置空間。在 Syne Tune 中,該字典也可用于將常量屬性傳遞給訓(xùn)練腳本。我們利用此功能以通過 max_epochs. 此外,我們指定要在 中評估的第一個配置initial_config。

config_space = {
  "learning_rate": loguniform(1e-2, 1),
  "batch_size": randint(32, 256),
  "max_epochs": 10,
}
initial_config = {
  "learning_rate": 0.1,
  "batch_size": 128,
}

接下來,我們需要指定作業(yè)執(zhí)行的后端。這里我們只考慮本地機(jī)器上的分布,其中并行作業(yè)作為子進(jìn)程執(zhí)行。但是,對于大規(guī)模 HPO,我們也可以在集群或云環(huán)境中運(yùn)行它,其中每個試驗(yàn)都會消耗一個完整的實(shí)例。

trial_backend = PythonBackend(
  tune_function=hpo_objective_lenet_synetune,
  config_space=config_space,
)

BasicScheduler我們現(xiàn)在可以為異步隨機(jī)搜索創(chuàng)建調(diào)度程序,其行為與我們在 第 19.2 節(jié)中的類似。

scheduler = RandomSearch(
  config_space,
  metric=metric,
  mode=mode,
  points_to_evaluate=[initial_config],
)

INFO:syne_tune.optimizer.schedulers.fifo:max_resource_level = 10, as inferred from config_space
INFO:syne_tune.optimizer.schedulers.fifo:Master random_seed = 4033665588

Syne Tune 還具有一個Tuner,其中主要的實(shí)驗(yàn)循環(huán)和簿記是集中的,調(diào)度程序和后端之間的交互是中介的。

stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)

tuner = Tuner(
  trial_backend=trial_backend,
  scheduler=scheduler,
  stop_criterion=stop_criterion,
  n_workers=n_workers,
  print_update_interval=int(max_wallclock_time * 0.6),
)

讓我們運(yùn)行我們的分布式 HPO 實(shí)驗(yàn)。根據(jù)我們的停止標(biāo)準(zhǔn),它將運(yùn)行大約 12 分鐘。

tuner.run()

INFO:syne_tune.tuner:results of trials will be saved on /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691
INFO:root:Detected 8 GPUs
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.1 --batch_size 128 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/0/checkpoints
INFO:syne_tune.tuner:(trial 0) - scheduled config {'learning_rate': 0.1, 'batch_size': 128, 'max_epochs': 10}
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.31642002803324326 --batch_size 52 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/1/checkpoints
INFO:syne_tune.tuner:(trial 1) - scheduled config {'learning_rate': 0.31642002803324326, 'batch_size': 52, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 0 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.045813161553582046 --batch_size 71 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/2/checkpoints
INFO:syne_tune.tuner:(trial 2) - scheduled config {'learning_rate': 0.045813161553582046, 'batch_size': 71, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 1 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.11375402103945391 --batch_size 244 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/3/checkpoints
INFO:syne_tune.tuner:(trial 3) - scheduled config {'learning_rate': 0.11375402103945391, 'batch_size': 244, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 2 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.5211657199736571 --batch_size 47 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/4/checkpoints
INFO:syne_tune.tuner:(trial 4) - scheduled config {'learning_rate': 0.5211657199736571, 'batch_size': 47, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 3 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.05259930532982774 --batch_size 181 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/5/checkpoints
INFO:syne_tune.tuner:(trial 5) - scheduled config {'learning_rate': 0.05259930532982774, 'batch_size': 181, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 5 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.09086002421630578 --batch_size 48 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/6/checkpoints
INFO:syne_tune.tuner:(trial 6) - scheduled config {'learning_rate': 0.09086002421630578, 'batch_size': 48, 'max_epochs': 10}
INFO:syne_tune.tuner:tuning status (last metric is reported)
 trial_id   status iter learning_rate batch_size max_epochs epoch validation_error worker-time
    0 Completed  10    0.100000     128     10   10     0.258109  108.366785
    1 Completed  10    0.316420     52     10   10     0.146223  179.660365
    2 Completed  10    0.045813     71     10   10     0.311251  143.567631
    3 Completed  10    0.113754     244     10   10     0.336094  90.168444
    4 InProgress   8    0.521166     47     10   8     0.150257  156.696658
    5 Completed  10    0.052599     181     10   10     0.399893  91.044401
    6 InProgress   2    0.090860     48     10   2     0.453050  36.693606
2 trials running, 5 finished (5 until the end), 436.55s wallclock-time

INFO:syne_tune.tuner:Trial trial_id 4 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.03542833641356924 --batch_size 94 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/7/checkpoints
INFO:syne_tune.tuner:(trial 7) - scheduled config {'learning_rate': 0.03542833641356924, 'batch_size': 94, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 6 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.5941192130206245 --batch_size 149 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/8/checkpoints
INFO:syne_tune.tuner:(trial 8) - scheduled config {'learning_rate': 0.5941192130206245, 'batch_size': 149, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 7 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.013696247675312455 --batch_size 135 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/9/checkpoints
INFO:syne_tune.tuner:(trial 9) - scheduled config {'learning_rate': 0.013696247675312455, 'batch_size': 135, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 8 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.11837221527625114 --batch_size 75 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/10/checkpoints
INFO:syne_tune.tuner:(trial 10) - scheduled config {'learning_rate': 0.11837221527625114, 'batch_size': 75, 'max_epochs': 10}
INFO:syne_tune.tuner:Trial trial_id 9 completed.
INFO:root:running subprocess with command: /home/d2l-worker/miniconda3/envs/d2l-en-release-0/bin/python /home/d2l-worker/miniconda3/envs/d2l-en-release-0/lib/python3.9/site-packages/syne_tune/backend/python_backend/python_entrypoint.py --learning_rate 0.18877290342981604 --batch_size 187 --max_epochs 10 --tune_function_root /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/tune_function --tune_function_hash 53504c42ecb95363b73ac1f849a8a245 --st_checkpoint_dir /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691/11/checkpoints
INFO:syne_tune.tuner:(trial 11) - scheduled config {'learning_rate': 0.18877290342981604, 'batch_size': 187, 'max_epochs': 10}
INFO:syne_tune.stopping_criterion:reaching max wallclock time (720), stopping there.
INFO:syne_tune.tuner:Stopping trials that may still be running.
INFO:syne_tune.tuner:Tuning finished, results of trials can be found on /home/d2l-worker/syne-tune/python-entrypoint-2023-02-10-04-56-21-691
--------------------
Resource summary (last result is reported):
 trial_id   status iter learning_rate batch_size max_epochs epoch validation_error worker-time
    0 Completed  10    0.100000     128     10  10.0     0.258109  108.366785
    1 Completed  10    0.316420     52     10  10.0     0.146223  179.660365
    2 Completed  10    0.045813     71     10  10.0     0.311251  143.567631
    3 Completed  10    0.113754     244     10  10.0     0.336094  90.168444
    4 Completed  10    0.521166     47     10  10.0     0.146092  190.111242
    5 Completed  10    0.052599     181     10  10.0     0.399893  91.044401
    6 Completed  10    0.090860     48     10  10.0     0.197369  172.148435
    7 Completed  10    0.035428     94     10  10.0     0.414369  112.588123
    8 Completed  10    0.594119     149     10  10.0     0.177609  99.182505
    9 Completed  10    0.013696     135     10  10.0     0.901235  107.753385
    10 InProgress   2    0.118372     75     10  2.0     0.465970  32.484881
    11 InProgress   0    0.188773     187     10   -         -      -
2 trials running, 10 finished (10 until the end), 722.92s wallclock-time

validation_error: best 0.1377706527709961 for trial-id 4
--------------------

存儲所有評估的超參數(shù)配置的日志以供進(jìn)一步分析。在調(diào)整工作期間的任何時候,我們都可以輕松獲得目前獲得的結(jié)果并繪制現(xiàn)任軌跡。

d2l.set_figsize()
tuning_experiment = load_experiment(tuner.name)
tuning_experiment.plot()

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

pYYBAGR9PXSAWtcnAAGUPwydd8A066.svg

19.3.3。可視化異步優(yōu)化過程

下面我們可視化每次試驗(yàn)的學(xué)習(xí)曲線(圖中的每種顏色代表一次試驗(yàn))在異步優(yōu)化過程中是如何演變的。在任何時間點(diǎn),同時運(yùn)行的試驗(yàn)數(shù)量與我們的工人數(shù)量一樣多。一旦一個試驗(yàn)結(jié)束,我們立即開始下一個試驗(yàn),而不是等待其他試驗(yàn)完成。通過異步調(diào)度將工作人員的空閑時間減少到最低限度。

d2l.set_figsize([6, 2.5])
results = tuning_experiment.results

for trial_id in results.trial_id.unique():
  df = results[results["trial_id"] == trial_id]
  d2l.plt.plot(
    df["st_tuner_time"],
    df["validation_error"],
    marker="o"
  )

d2l.plt.xlabel("wall-clock time")
d2l.plt.ylabel("objective function")

Text(0, 0.5, 'objective function')

pYYBAGR9PXmAQh_xAAJPKd7h_3E023.svg

19.3.4。概括

我們可以通過跨并行資源的分布試驗(yàn)大大減少隨機(jī)搜索的等待時間。一般來說,我們區(qū)分同步調(diào)度和異步調(diào)度。同步調(diào)度意味著我們在前一批完成后對新一批超參數(shù)配置進(jìn)行采樣。如果我們有掉隊(duì)者——比其他試驗(yàn)需要更多時間才能完成的試驗(yàn)——我們的工作人員需要在同步點(diǎn)等待。一旦資源可用,異步調(diào)度就會評估新的超參數(shù)配置,從而確保所有工作人員在任何時間點(diǎn)都很忙。雖然隨機(jī)搜索易于異步分發(fā)并且不需要對實(shí)際算法進(jìn)行任何更改,但其他方法需要進(jìn)行一些額外的修改。

19.3.5。練習(xí)

考慮DropoutMLP在 5.6 節(jié)中實(shí)現(xiàn)并在 19.2 節(jié)的練習(xí) 1 中使用的模型。

hpo_objective_dropoutmlp_synetune實(shí)施要與 Syne Tune 一起使用的目標(biāo)函數(shù) 。確保您的函數(shù)在每個時期后報(bào)告驗(yàn)證錯誤。

使用19.2 節(jié)練習(xí) 1 的設(shè)置,將隨機(jī)搜索與貝葉斯優(yōu)化進(jìn)行比較。如果您使用 SageMaker,請隨意使用 Syne Tune 的基準(zhǔn)測試工具以并行運(yùn)行實(shí)驗(yàn)。提示:貝葉斯優(yōu)化作為syne_tune.optimizer.baselines.BayesianOptimization.

對于本練習(xí),您需要在至少具有 4 個 CPU 內(nèi)核的實(shí)例上運(yùn)行。對于上面使用的方法之一(隨機(jī)搜索、貝葉斯優(yōu)化),使用n_workers=1、 n_workers=2、運(yùn)行實(shí)驗(yàn)n_workers=4并比較結(jié)果(現(xiàn)任軌跡)。至少對于隨機(jī)搜索,您應(yīng)該觀察到工人數(shù)量的線性比例。提示:為了獲得穩(wěn)健的結(jié)果,您可能必須對每次重復(fù)多次進(jìn)行平均。

進(jìn)階。本練習(xí)的目標(biāo)是在 Syne Tune 中實(shí)施新的調(diào)度程序。

創(chuàng)建一個包含 d2lbook 和 syne-tune 源的虛擬環(huán)境。

在 Syne Tune 中將第 19.2 節(jié)LocalSearcher中的練習(xí) 2 作為新的搜索器來實(shí)現(xiàn)。提示:閱讀 本教程。或者,您可以按照此 示例進(jìn)行操作。

將您的新產(chǎn)品LocalSearcher與RandomSearch基準(zhǔn) 進(jìn)行比較DropoutMLP。

Discussions

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4742

    瀏覽量

    128973
  • 異步
    +關(guān)注

    關(guān)注

    0

    文章

    62

    瀏覽量

    18062
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    808

    瀏覽量

    13235
收藏 人收藏

    評論

    相關(guān)推薦

    PyTorch如何入門

    PyTorch 入門實(shí)戰(zhàn)(一)——Tensor
    發(fā)表于 06-01 09:58

    Pytorch AI語音助手

    想做一個Pytorch AI語音助手,有沒有好的思路呀?
    發(fā)表于 03-06 13:00

    怎樣使用PyTorch Hub去加載YOLOv5模型

    在Python>=3.7.0環(huán)境中安裝requirements.txt,包括PyTorch>=1.7。模型和數(shù)據(jù)集從最新的 YOLOv5版本自動下載。簡單示例此示例從
    發(fā)表于 07-22 16:02

    通過Cortex來非常方便的部署PyTorch模型

    該框架的 python 風(fēng)格,其學(xué)習(xí)曲線的溫和性,以及它對快速和簡單原型的方便實(shí)現(xiàn),使 PyTorch 明顯成為研究人員的最愛。因此,它正在推動一些最酷的機(jī)器學(xué)習(xí)項(xiàng)目:Transformers
    發(fā)表于 11-01 15:25

    如何往星光2板子里裝pytorch?

    如題,想先gpu版本的pytorch只安裝cpu版本的pytorch,pytorch官網(wǎng)提供了基于conda和pip兩種安裝方式。因?yàn)樵凼莚isc架構(gòu)沒對應(yīng)的conda,而使用pip安裝提示也沒有
    發(fā)表于 09-12 06:30

    改進(jìn)雙向快速搜索隨機(jī)樹算法綜述

    改進(jìn)雙向快速搜索隨機(jī)樹算法綜述
    發(fā)表于 07-02 14:40 ?15次下載

    PyTorch教程10.8之波束搜索

    電子發(fā)燒友網(wǎng)站提供《PyTorch教程10.8之波束搜索.pdf》資料免費(fèi)下載
    發(fā)表于 06-05 15:09 ?0次下載
    <b class='flag-5'>PyTorch</b>教程10.8之波束<b class='flag-5'>搜索</b>

    PyTorch教程12.4之隨機(jī)梯度下降

    電子發(fā)燒友網(wǎng)站提供《PyTorch教程12.4之隨機(jī)梯度下降.pdf》資料免費(fèi)下載
    發(fā)表于 06-05 14:58 ?0次下載
    <b class='flag-5'>PyTorch</b>教程12.4之<b class='flag-5'>隨機(jī)</b>梯度下降

    PyTorch教程12.5之小批量隨機(jī)梯度下降

    電子發(fā)燒友網(wǎng)站提供《PyTorch教程12.5之小批量隨機(jī)梯度下降.pdf》資料免費(fèi)下載
    發(fā)表于 06-05 15:00 ?0次下載
    <b class='flag-5'>PyTorch</b>教程12.5之小批量<b class='flag-5'>隨機(jī)</b>梯度下降

    PyTorch教程13.2之異步計(jì)算

    電子發(fā)燒友網(wǎng)站提供《PyTorch教程13.2之異步計(jì)算.pdf》資料免費(fèi)下載
    發(fā)表于 06-05 14:46 ?0次下載
    <b class='flag-5'>PyTorch</b>教程13.2之<b class='flag-5'>異步</b>計(jì)算

    PyTorch教程19.3異步隨機(jī)搜索

    電子發(fā)燒友網(wǎng)站提供《PyTorch教程19.3異步隨機(jī)搜索.pdf》資料免費(fèi)下載
    發(fā)表于 06-05 10:43 ?0次下載
    <b class='flag-5'>PyTorch</b>教程<b class='flag-5'>19.3</b>之<b class='flag-5'>異步</b><b class='flag-5'>隨機(jī)</b><b class='flag-5'>搜索</b>

    PyTorch教程22.6之隨機(jī)變量

    電子發(fā)燒友網(wǎng)站提供《PyTorch教程22.6之隨機(jī)變量.pdf》資料免費(fèi)下載
    發(fā)表于 06-06 09:24 ?0次下載
    <b class='flag-5'>PyTorch</b>教程22.6之<b class='flag-5'>隨機(jī)</b>變量

    PyTorch教程-10.8。波束搜索

    10.8。波束搜索? Colab [火炬]在 Colab 中打開筆記本 Colab [mxnet] Open the notebook in Colab Colab [jax
    的頭像 發(fā)表于 06-05 15:44 ?475次閱讀
    <b class='flag-5'>PyTorch</b>教程-10.8。波束<b class='flag-5'>搜索</b>

    PyTorch教程-12.4。隨機(jī)梯度下降

    12.4。隨機(jī)梯度下降? Colab [火炬]在 Colab 中打開筆記本 Colab [mxnet] Open the notebook in Colab Colab [jax
    的頭像 發(fā)表于 06-05 15:44 ?464次閱讀
    <b class='flag-5'>PyTorch</b>教程-12.4。<b class='flag-5'>隨機(jī)</b>梯度下降

    PyTorch教程-13.2. 異步計(jì)算

    改變。MXNet 和 TensorFlow 等深度學(xué)習(xí)框架采用 異步編程模型來提高性能,而 PyTorch 使用 Python 自己的調(diào)度程序?qū)е虏煌男阅軝?quán)衡。對于 PyTorch,默認(rèn)情況下,GPU 操作是
    的頭像 發(fā)表于 06-05 15:44 ?607次閱讀
    <b class='flag-5'>PyTorch</b>教程-13.2. <b class='flag-5'>異步</b>計(jì)算