物體檢測(cè)算法通常在輸入圖像中采樣大量區(qū)域,判斷這些區(qū)域是否包含感興趣的物體,并調(diào)整區(qū)域的邊界,從而更準(zhǔn)確地預(yù)測(cè)物體的真實(shí)邊界 框。不同的模型可能采用不同的區(qū)域采樣方案。在這里,我們介紹其中一種方法:它生成多個(gè)以每個(gè)像素為中心的具有不同比例和縱橫比的邊界框。這些邊界框稱為錨框。我們將在14.7 節(jié)設(shè)計(jì)一個(gè)基于錨框的目標(biāo)檢測(cè)模型。
首先,讓我們修改打印精度以獲得更簡(jiǎn)潔的輸出。
%matplotlib inline import torch from d2l import torch as d2l torch.set_printoptions(2) # Simplify printing accuracy
%matplotlib inline from mxnet import gluon, image, np, npx from d2l import mxnet as d2l np.set_printoptions(2) # Simplify printing accuracy npx.set_np()
14.4.1。生成多個(gè)錨框
假設(shè)輸入圖像的高度為h和寬度 w. 我們以圖像的每個(gè)像素為中心生成具有不同形狀的錨框。讓規(guī)模成為s∈(0,1]縱橫比(寬高比)為 r>0. 那么anchor box的寬高分別是hsr和 hs/r, 分別。請(qǐng)注意,當(dāng)中心位置給定時(shí),將確定一個(gè)已知寬度和高度的錨框。
為了生成多個(gè)不同形狀的錨框,讓我們?cè)O(shè)置一系列尺度s1,…,sn和一系列縱橫比 r1,…,rm. 當(dāng)以每個(gè)像素為中心使用這些尺度和縱橫比的所有組合時(shí),輸入圖像將總共有whnm錨箱。雖然這些anchor boxes可能會(huì)覆蓋所有的ground-truth bounding boxes,但是計(jì)算復(fù)雜度很容易過(guò)高。在實(shí)踐中,我們只能考慮那些包含s1或者r1:
(14.4.1)(s1,r1),(s1,r2),…,(s1,rm),(s2,r1),(s3,r1),…,(sn,r1).
也就是說(shuō),以同一個(gè)像素為中心的anchor boxes的個(gè)數(shù)為 n+m?1. 對(duì)于整個(gè)輸入圖像,我們將生成總共 wh(n+m?1)錨箱。
上面生成anchor boxes的方法是在下面的multibox_prior函數(shù)中實(shí)現(xiàn)的。我們指定輸入圖像、比例列表和縱橫比列表,然后此函數(shù)將返回所有錨框。
#@save def multibox_prior(data, sizes, ratios): """Generate anchor boxes with different shapes centered on each pixel.""" in_height, in_width = data.shape[-2:] device, num_sizes, num_ratios = data.device, len(sizes), len(ratios) boxes_per_pixel = (num_sizes + num_ratios - 1) size_tensor = torch.tensor(sizes, device=device) ratio_tensor = torch.tensor(ratios, device=device) # Offsets are required to move the anchor to the center of a pixel. Since # a pixel has height=1 and width=1, we choose to offset our centers by 0.5 offset_h, offset_w = 0.5, 0.5 steps_h = 1.0 / in_height # Scaled steps in y axis steps_w = 1.0 / in_width # Scaled steps in x axis # Generate all center points for the anchor boxes center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij') shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1) # Generate `boxes_per_pixel` number of heights and widths that are later # used to create anchor box corner coordinates (xmin, xmax, ymin, ymax) w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]), sizes[0] * torch.sqrt(ratio_tensor[1:]))) * in_height / in_width # Handle rectangular inputs h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]), sizes[0] / torch.sqrt(ratio_tensor[1:]))) # Divide by 2 to get half height and half width anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat( in_height * in_width, 1) / 2 # Each center point will have `boxes_per_pixel` number of anchor boxes, so # generate a grid of all anchor box centers with `boxes_per_pixel` repeats out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y], dim=1).repeat_interleave(boxes_per_pixel, dim=0) output = out_grid + anchor_manipulations return output.unsqueeze(0)
#@save def multibox_prior(data, sizes, ratios): """Generate anchor boxes with different shapes centered on each pixel.""" in_height, in_width = data.shape[-2:] device, num_sizes, num_ratios = data.ctx, len(sizes), len(ratios) boxes_per_pixel = (num_sizes + num_ratios - 1) size_tensor = np.array(sizes, ctx=device) ratio_tensor = np.array(ratios, ctx=device) # Offsets are required to move the anchor to the center of a pixel. Since # a pixel has height=1 and width=1, we choose to offset our centers by 0.5 offset_h, offset_w = 0.5, 0.5 steps_h = 1.0 / in_height # Scaled steps in y-axis steps_w = 1.0 / in_width # Scaled steps in x-axis # Generate all center points for the anchor boxes center_h = (np.arange(in_height, ctx=device) + offset_h) * steps_h center_w = (np.arange(in_width, ctx=device) + offset_w) * steps_w shift_x, shift_y = np.meshgrid(center_w, center_h) shift_x, shift_y = shift_x.reshape(-1), shift_y.reshape(-1) # Generate `boxes_per_pixel` number of heights and widths that are later # used to create anchor box corner coordinates (xmin, xmax, ymin, ymax) w = np.concatenate((size_tensor * np.sqrt(ratio_tensor[0]), sizes[0] * np.sqrt(ratio_tensor[1:]))) * in_height / in_width # Handle rectangular inputs h = np.concatenate((size_tensor / np.sqrt(ratio_tensor[0]), sizes[0] / np.sqrt(ratio_tensor[1:]))) # Divide by 2 to get half height and half width anchor_manipulations = np.tile(np.stack((-w, -h, w, h)).T, (in_height * in_width, 1)) / 2 # Each center point will have `boxes_per_pixel` number of anchor boxes, so # generate a grid of all anchor box centers with `boxes_per_pixel` repeats out_grid = np.stack([shift_x, shift_y, shift_x, shift_y], axis=1).repeat(boxes_per_pixel, axis=0) output = out_grid + anchor_manipulations return np.expand_dims(output, axis=0)
我們可以看到返回的anchor box變量的shapeY為(batch size, number of anchor boxes, 4)。
img = d2l.plt.imread('../img/catdog.jpg') h, w = img.shape[:2] print(h, w) X = torch.rand(size=(1, 3, h, w)) # Construct input data Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5]) Y.shape
561 728
torch.Size([1, 2042040, 4])
img = image.imread('../img/catdog.jpg').asnumpy() h, w = img.shape[:2] print(h, w) X = np.random.uniform(size=(1, 3, h, w)) # Construct input data Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5]) Y.shape
561 728
(1, 2042040, 4)
將anchor box變量的shape修改Y為(圖像高度,圖像寬度,以同一像素為中心的anchor boxes個(gè)數(shù),4),我們就可以得到以指定像素位置為中心的所有anchor boxes。在下文中,我們?cè)L問(wèn)以 (250, 250) 為中心的第一個(gè)錨框。它有四個(gè)要素:(x,y)- 軸坐標(biāo)在左上角和(x,y)錨框右下角的軸坐標(biāo)。兩個(gè)軸的坐標(biāo)值分別除以圖像的寬度和高度。
boxes = Y.reshape(h, w, 5, 4) boxes[250, 250, 0, :]
tensor([0.06, 0.07, 0.63, 0.82])
boxes = Y.reshape(h, w, 5, 4) boxes[250, 250, 0, :]
array([0.06, 0.07, 0.63, 0.82])
為了顯示圖像中以一個(gè)像素為中心的所有錨框,我們定義以下show_bboxes函數(shù)在圖像上繪制多個(gè)邊界框。
#@save def show_bboxes(axes, bboxes, labels=None, colors=None): """Show bounding boxes.""" def make_list(obj, default_values=None): if obj is None: obj = default_values elif not isinstance(obj, (list, tuple)): obj = [obj] return obj labels = make_list(labels) colors = make_list(colors, ['b', 'g', 'r', 'm', 'c']) for i, bbox in enumerate(bboxes): color = colors[i % len(colors)] rect = d2l.bbox_to_rect(bbox.detach().numpy(), color) axes.add_patch(rect) if labels and len(labels) > i: text_color = 'k' if color == 'w' else 'w' axes.text(rect.xy[0], rect.xy[1], labels[i], va='center', ha='center', fontsize=9, color=text_color, bbox=dict(facecolor=color, lw=0))
#@save def show_bboxes(axes, bboxes, labels=None, colors=None): """Show bounding boxes.""" def make_list(obj, default_values=None): if obj is None: obj = default_values elif not isinstance(obj, (list, tuple)): obj = [obj] return obj labels = make_list(labels) colors = make_list(colors, ['b', 'g', 'r', 'm', 'c']) for i, bbox in enumerate(bboxes): color = colors[i % len(colors)] rect = d2l.bbox_to_rect(bbox.asnumpy(), color) axes.add_patch(rect) if labels and len(labels) > i: text_color = 'k' if color == 'w' else 'w' axes.text(rect.xy[0], rect.xy[1], labels[i], va='center', ha='center', fontsize=9, color=text_color, bbox=dict(facecolor=color, lw=0))
正如我們剛剛看到的,x和y 變量中的軸boxes分別除以圖像的寬度和高度。在繪制anchor boxes時(shí),我們需要恢復(fù)它們?cè)瓉?lái)的坐標(biāo)值;因此,我們?cè)谙旅娑x變量 bbox_scale?,F(xiàn)在,我們可以繪制圖像中所有以 (250, 250) 為中心的錨框。如您所見(jiàn),比例為 0.75、縱橫比為 1 的藍(lán)色錨框很好地包圍了圖像中的狗。
d2l.set_figsize() bbox_scale = torch.tensor((w, h, w, h)) fig = d2l.plt.imshow(img) show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale, ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2', 's=0.75, r=0.5'])
d2l.set_figsize() bbox_scale = np.array((w, h, w, h)) fig = d2l.plt.imshow(img) show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale, ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2', 's=0.75, r=0.5'])
14.4.2。并集交集 (IoU)
我們剛剛提到圖像中的狗周圍有一個(gè)錨框“井”。如果物體的ground-truth bounding box是已知的,那么這里的“well”怎么量化呢?直觀上,我們可以衡量錨框和真實(shí)邊界框之間的相似度。我們知道杰卡德指數(shù)可以衡量?jī)蓚€(gè)集合之間的相似度。給定的集合A和B,它們的 Jaccard 指數(shù)是交集的大小除以并集的大?。?/p>
(14.4.2)J(A,B)=|A∩B||A∪B|.
事實(shí)上,我們可以將任何邊界框的像素區(qū)域視為一組像素。這樣,我們就可以通過(guò)它們像素集的 Jaccard 指數(shù)來(lái)衡量?jī)蓚€(gè)邊界框的相似度。對(duì)于兩個(gè)邊界框,我們通常將它們的 Jaccard 指數(shù)稱為intersection over union ( IoU ),即它們的交集面積與它們的并集面積之比,如圖14.4.1所示。IoU 的范圍在 0 到 1 之間:0 表示兩個(gè)邊界框完全不重疊,而 1 表示兩個(gè)邊界框相等。
圖 14.4.1 IoU 是兩個(gè)邊界框的交集面積與并集面積之比。
對(duì)于本節(jié)的其余部分,我們將使用 IoU 來(lái)衡量錨框和真實(shí)邊界框之間以及不同錨框之間的相似性。給定兩個(gè)錨點(diǎn)或邊界框列表,以下box_iou計(jì)算它們?cè)谶@兩個(gè)列表中的成對(duì) IoU。
#@save def box_iou(boxes1, boxes2): """Compute pairwise IoU across two lists of anchor or bounding boxes.""" box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])) # Shape of `boxes1`, `boxes2`, `areas1`, `areas2`: (no. of boxes1, 4), # (no. of boxes2, 4), (no. of boxes1,), (no. of boxes2,) areas1 = box_area(boxes1) areas2 = box_area(boxes2) # Shape of `inter_upperlefts`, `inter_lowerrights`, `inters`: (no. of # boxes1, no. of boxes2, 2) inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2]) inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) inters = (inter_lowerrights - inter_upperlefts).clamp(min=0) # Shape of `inter_areas` and `union_areas`: (no. of boxes1, no. of boxes2) inter_areas = inters[:, :, 0] * inters[:, :, 1] union_areas = areas1[:, None] + areas2 - inter_areas return inter_areas / union_areas
#@save def box_iou(boxes1, boxes2): """Compute pairwise IoU across two lists of anchor or bounding boxes.""" box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])) # Shape of `boxes1`, `boxes2`, `areas1`, `areas2`: (no. of boxes1, 4), # (no. of boxes2, 4), (no. of boxes1,), (no. of boxes2,) areas1 = box_area(boxes1) areas2 = box_area(boxes2) # Shape of `inter_upperlefts`, `inter_lowerrights`, `inters`: (no. of # boxes1, no. of boxes2, 2) inter_upperlefts = np.maximum(boxes1[:, None, :2], boxes2[:, :2]) inter_lowerrights = np.minimum(boxes1[:, None, 2:], boxes2[:, 2:]) inters = (inter_lowerrights - inter_upperlefts).clip(min=0) # Shape of `inter_areas` and `union_areas`: (no. of boxes1, no. of boxes2) inter_areas = inters[:, :, 0] * inters[:, :, 1] union_areas = areas1[:, None] + areas2 - inter_areas return inter_areas / union_areas
14.4.3。在訓(xùn)練數(shù)據(jù)中標(biāo)記錨框
在訓(xùn)練數(shù)據(jù)集中,我們將每個(gè)錨框視為訓(xùn)練示例。為了訓(xùn)練目標(biāo)檢測(cè)模型,我們需要每個(gè)錨框的類 和偏移標(biāo)簽,其中前者是與錨框相關(guān)的對(duì)象的類別,后者是真實(shí)邊界框相對(duì)于錨箱。在預(yù)測(cè)過(guò)程中,我們?yōu)槊繌垐D像生成多個(gè)anchor boxes,為所有anchor boxes預(yù)測(cè)類別和偏移量,根據(jù)預(yù)測(cè)的偏移量調(diào)整它們的位置以獲得預(yù)測(cè)的bounding boxes,最后只輸出那些滿足一定條件的預(yù)測(cè)bounding boxes .
正如我們所知,對(duì)象檢測(cè)訓(xùn)練集帶有用于真實(shí)邊界框位置及其周圍對(duì)象類別的標(biāo)簽。為了標(biāo)記任何生成的錨框,我們參考其分配的最接近錨框的地面實(shí)況邊界框的標(biāo)記位置和類別。在下文中,我們描述了一種將最接近的地面實(shí)況邊界框分配給錨框的算法。
14.4.3.1。將真實(shí)邊界框分配給錨框
給定一張圖像,假設(shè)錨框是 A1,A2,…,Ana真實(shí)邊界框是B1,B2,…,Bnb, 在哪里na≥nb. 讓我們定義一個(gè)矩陣X∈Rna×nb, 其元素xij在里面ith行和 jth列是anchor box的IoUAi 和真實(shí)邊界框Bj. 該算法包括以下步驟:
找到矩陣中的最大元素X并將其行和列索引表示為i1和j1, 分別。然后是真實(shí)邊界框Bj1被分配到anchor boxAi1. 這是非常直觀的,因?yàn)?Ai1和Bj1是所有成對(duì)的錨框和真實(shí)邊界框中最接近的。第一次賦值后,丟棄所有元素 i1th行和j1th 矩陣中的列X.
在矩陣中找到最大的剩余元素 X并將其行和列索引表示為 i2和j2, 分別。我們分配地面實(shí)況邊界框Bj2錨框Ai2并丟棄其中的所有元素i2th行和 j2th矩陣中的列X.
此時(shí),矩陣中兩行兩列的元素 X已被丟棄。我們繼續(xù)進(jìn)行,直到所有元素都在nb矩陣中的列X被丟棄。這時(shí)候,我們已經(jīng)為每一個(gè)都分配了一個(gè)ground-truth bounding box nb錨箱。
只遍歷剩下的na?nb錨箱。例如,給定任何錨框Ai, 找到真實(shí)邊界框Bj具有最大的 IoUAi 在整個(gè)ith矩陣行 X, 并賦值Bj到Ai僅當(dāng)此 IoU 大于預(yù)定義閾值時(shí)。
讓我們用一個(gè)具體的例子來(lái)說(shuō)明上述算法。如圖 14.4.2 (左)所示,假設(shè)矩陣中的最大值X是x23,我們分配地面實(shí)況邊界框B3到錨箱A2. 然后,我們舍棄矩陣第2行第3列的所有元素,找到最大的x71在剩余的元素(陰影區(qū)域)中,并分配地面實(shí)況邊界框B1到錨箱 A7. 接下來(lái),如圖14.4.2 (中)所示,舍棄矩陣第7行第1列的所有元素,找出最大的x54在剩余的元素(陰影區(qū)域)中,并分配地面實(shí)況邊界框B4到錨箱 A5. 最后,如圖14.4.2 (右)所示,舍去矩陣第5行第4列的所有元素,找到最大的x92在剩余的元素(陰影區(qū)域)中,并分配地面實(shí)況邊界框B2到錨箱 A9. 之后我們只需要遍歷剩下的anchor boxesA1,A3,A4,A6,A8并根據(jù)閾值決定是否給它們分配ground-truth邊界框。
圖 14.4.2將真實(shí)邊界框分配給錨框。
該算法在以下函數(shù)中實(shí)現(xiàn)assign_anchor_to_bbox 。
#@save def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5): """Assign closest ground-truth bounding boxes to anchor boxes.""" num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0] # Element x_ij in the i-th row and j-th column is the IoU of the anchor # box i and the ground-truth bounding box j jaccard = box_iou(anchors, ground_truth) # Initialize the tensor to hold the assigned ground-truth bounding box for # each anchor anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long, device=device) # Assign ground-truth bounding boxes according to the threshold max_ious, indices = torch.max(jaccard, dim=1) anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1) box_j = indices[max_ious >= iou_threshold] anchors_bbox_map[anc_i] = box_j col_discard = torch.full((num_anchors,), -1) row_discard = torch.full((num_gt_boxes,), -1) for _ in range(num_gt_boxes): max_idx = torch.argmax(jaccard) # Find the largest IoU box_idx = (max_idx % num_gt_boxes).long() anc_idx = (max_idx / num_gt_boxes).long() anchors_bbox_map[anc_idx] = box_idx jaccard[:, box_idx] = col_discard jaccard[anc_idx, :] = row_discard return anchors_bbox_map
#@save def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5): """Assign closest ground-truth bounding boxes to anchor boxes.""" num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0] # Element x_ij in the i-th row and j-th column is the IoU of the anchor # box i and the ground-truth bounding box j jaccard = box_iou(anchors, ground_truth) # Initialize the tensor to hold the assigned ground-truth bounding box for # each anchor anchors_bbox_map = np.full((num_anchors,), -1, dtype=np.int32, ctx=device) # Assign ground-truth bounding boxes according to the threshold max_ious, indices = np.max(jaccard, axis=1), np.argmax(jaccard, axis=1) anc_i = np.nonzero(max_ious >= iou_threshold)[0] box_j = indices[max_ious >= iou_threshold] anchors_bbox_map[anc_i] = box_j col_discard = np.full((num_anchors,), -1) row_discard = np.full((num_gt_boxes,), -1) for _ in range(num_gt_boxes): max_idx = np.argmax(jaccard) # Find the largest IoU box_idx = (max_idx % num_gt_boxes).astype('int32') anc_idx = (max_idx / num_gt_boxes).astype('int32') anchors_bbox_map[anc_idx] = box_idx jaccard[:, box_idx] = col_discard jaccard[anc_idx, :] = row_discard return anchors_bbox_map
14.4.3.2。標(biāo)注類別和偏移量
現(xiàn)在我們可以為每個(gè)錨框標(biāo)記類別和偏移量。假設(shè)一個(gè)錨框A被分配了一個(gè)真實(shí)邊界框 B. 一方面,anchor box的類A將被標(biāo)記為B. 另一方面,anchor box的偏移量A會(huì)根據(jù)中心坐標(biāo)之間的相對(duì)位置進(jìn)行標(biāo)注B和A以及這兩個(gè)框之間的相對(duì)大小。給定數(shù)據(jù)集中不同框的不同位置和大小,我們可以對(duì)那些可能導(dǎo)致更容易擬合的更均勻分布的偏移量應(yīng)用轉(zhuǎn)換到那些相對(duì)位置和大小。這里我們描述一個(gè)常見(jiàn)的轉(zhuǎn)換。給定中心坐標(biāo)A和B 作為(xa,ya)和(xb,yb), 它們的寬度為 wa和wb, 他們的身高為ha和 hb, 分別。我們可以標(biāo)記偏移量A作為
(14.4.3)(xb?xawa?μxσx,yb?yaha?μyσy,log?wbwa?μwσw,log?hbha?μhσh),
其中常量的默認(rèn)值是 μx=μy=μw=μh=0,σx=σy=0.1, 和 σw=σh=0.2. 此轉(zhuǎn)換在下面的函數(shù)中實(shí)現(xiàn)offset_boxes。
#@save def offset_boxes(anchors, assigned_bb, eps=1e-6): """Transform for anchor box offsets.""" c_anc = d2l.box_corner_to_center(anchors) c_assigned_bb = d2l.box_corner_to_center(assigned_bb) offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:] offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:]) offset = torch.cat([offset_xy, offset_wh], axis=1) return offset
#@save def offset_boxes(anchors, assigned_bb, eps=1e-6): """Transform for anchor box offsets.""" c_anc = d2l.box_corner_to_center(anchors) c_assigned_bb = d2l.box_corner_to_center(assigned_bb) offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:] offset_wh = 5 * np.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:]) offset = np.concatenate([offset_xy, offset_wh], axis=1) return offset
如果沒(méi)有為錨框分配真實(shí)邊界框,我們只需將錨框的類別標(biāo)記為“背景”。類別為背景的錨框通常稱為負(fù)錨框,其余稱為正錨框。我們實(shí)現(xiàn)了以下函數(shù),使用真實(shí)邊界框(參數(shù))來(lái)標(biāo)記錨框(參數(shù))multibox_target的類和偏移量。此函數(shù)將背景類設(shè)置為零,并將新類的整數(shù)索引遞增 1。anchorslabels
#@save def multibox_target(anchors, labels): """Label anchor boxes using ground-truth bounding boxes.""" batch_size, anchors = labels.shape[0], anchors.squeeze(0) batch_offset, batch_mask, batch_class_labels = [], [], [] device, num_anchors = anchors.device, anchors.shape[0] for i in range(batch_size): label = labels[i, :, :] anchors_bbox_map = assign_anchor_to_bbox( label[:, 1:], anchors, device) bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat( 1, 4) # Initialize class labels and assigned bounding box coordinates with # zeros class_labels = torch.zeros(num_anchors, dtype=torch.long, device=device) assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32, device=device) # Label classes of anchor boxes using their assigned ground-truth # bounding boxes. If an anchor box is not assigned any, we label its # class as background (the value remains zero) indices_true = torch.nonzero(anchors_bbox_map >= 0) bb_idx = anchors_bbox_map[indices_true] class_labels[indices_true] = label[bb_idx, 0].long() + 1 assigned_bb[indices_true] = label[bb_idx, 1:] # Offset transformation offset = offset_boxes(anchors, assigned_bb) * bbox_mask batch_offset.append(offset.reshape(-1)) batch_mask.append(bbox_mask.reshape(-1)) batch_class_labels.append(class_labels) bbox_offset = torch.stack(batch_offset) bbox_mask = torch.stack(batch_mask) class_labels = torch.stack(batch_class_labels) return (bbox_offset, bbox_mask, class_labels)
#@save def multibox_target(anchors, labels): """Label anchor boxes using ground-truth bounding boxes.""" batch_size, anchors = labels.shape[0], anchors.squeeze(0) batch_offset, batch_mask, batch_class_labels = [], [], [] device, num_anchors = anchors.ctx, anchors.shape[0] for i in range(batch_size): label = labels[i, :, :] anchors_bbox_map = assign_anchor_to_bbox( label[:, 1:], anchors, device) bbox_mask = np.tile((np.expand_dims((anchors_bbox_map >= 0), axis=-1)), (1, 4)).astype('int32') # Initialize class labels and assigned bounding box coordinates with # zeros class_labels = np.zeros(num_anchors, dtype=np.int32, ctx=device) assigned_bb = np.zeros((num_anchors, 4), dtype=np.float32, ctx=device) # Label classes of anchor boxes using their assigned ground-truth # bounding boxes. If an anchor box is not assigned any, we label its # class as background (the value remains zero) indices_true = np.nonzero(anchors_bbox_map >= 0)[0] bb_idx = anchors_bbox_map[indices_true] class_labels[indices_true] = label[bb_idx, 0].astype('int32') + 1 assigned_bb[indices_true] = label[bb_idx, 1:] # Offset transformation offset = offset_boxes(anchors, assigned_bb) * bbox_mask batch_offset.append(offset.reshape(-1)) batch_mask.append(bbox_mask.reshape(-1)) batch_class_labels.append(class_labels) bbox_offset = np.stack(batch_offset) bbox_mask = np.stack(batch_mask) class_labels = np.stack(batch_class_labels) return (bbox_offset, bbox_mask, class_labels)
14.4.3.3。一個(gè)例子
讓我們通過(guò)一個(gè)具體的例子來(lái)說(shuō)明錨框標(biāo)記。我們?yōu)榧虞d圖像中的狗和貓定義地面真實(shí)邊界框,其中第一個(gè)元素是類(0 代表狗,1 代表貓),其余四個(gè)元素是(x,y)- 左上角和右下角的軸坐標(biāo)(范圍在 0 和 1 之間)。我們還使用左上角和右下角的坐標(biāo)構(gòu)造了五個(gè)要標(biāo)記的錨框: A0,…,A4(索引從0開(kāi)始)。然后我們?cè)趫D像中繪制這些真實(shí)邊界框和錨框。
ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92], [1, 0.55, 0.2, 0.9, 0.88]]) anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4], [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8], [0.57, 0.3, 0.92, 0.9]]) fig = d2l.plt.imshow(img) show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k') show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);
ground_truth = np.array([[0, 0.1, 0.08, 0.52, 0.92], [1, 0.55, 0.2, 0.9, 0.88]]) anchors = np.array([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4], [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8], [0.57, 0.3, 0.92, 0.9]]) fig = d2l.plt.imshow(img) show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k') show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);
使用multibox_target上面定義的函數(shù),我們可以根據(jù)狗和貓的真實(shí)邊界框來(lái)標(biāo)記這些錨框的類別和偏移量。在此示例中,背景、狗和貓類的索引分別為 0、1 和 2。下面我們?yōu)閍nchor boxes和ground-truth bounding boxes的例子添加一個(gè)維度。
labels = multibox_target(anchors.unsqueeze(dim=0), ground_truth.unsqueeze(dim=0))
labels = multibox_target(np.expand_dims(anchors, axis=0), np.expand_dims(ground_truth, axis=0))
返回結(jié)果中有三項(xiàng),都是張量格式。第三項(xiàng)包含輸入錨框的標(biāo)記類。
讓我們根據(jù)圖像中的錨框和真實(shí)邊界框位置分析下面返回的類標(biāo)簽。首先,在所有的anchor boxes和ground-truth bounding boxes對(duì)中,anchor boxes的IoUA4貓的真實(shí)邊界框是最大的。因此,類A4被標(biāo)記為貓。取出包含的對(duì)A4或貓的真實(shí)邊界框,其余的一對(duì)錨框A1狗的真實(shí)邊界框具有最大的 IoU。所以類A1被標(biāo)記為狗。接下來(lái),我們需要遍歷剩下的三個(gè)未標(biāo)記的anchor boxes:A0, A2, 和A3. 為了A0,具有最大IoU的ground-truth邊界框的類別是狗,但I(xiàn)oU低于預(yù)定義的閾值(0.5),因此該類別被標(biāo)記為背景;為了A2,具有最大IoU的ground-truth bounding box的類別是貓,并且IoU超過(guò)閾值,因此該類別被標(biāo)記為貓;為了A3,具有最大IoU的ground-truth bounding box的類別是貓,但該值低于閾值,因此該類別被標(biāo)記為背景。
labels[2]
tensor([[0, 1, 2, 0, 2]])
labels[2]
array([[0, 1, 2, 0, 2]], dtype=int32)
第二個(gè)返回項(xiàng)是形狀的掩碼變量(批量大小,錨框數(shù)量的四倍)。掩碼變量中每四個(gè)元素對(duì)應(yīng)每個(gè)錨框的四個(gè)偏移值。由于我們不關(guān)心背景檢測(cè),這個(gè)負(fù)類的偏移量不應(yīng)該影響目標(biāo)函數(shù)。通過(guò)逐元素乘法,掩碼變量中的零將在計(jì)算目標(biāo)函數(shù)之前過(guò)濾掉負(fù)類偏移。
labels[1]
tensor([[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 1.]])
labels[1]
array([[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]], dtype=int32)
第一個(gè)返回的項(xiàng)目包含為每個(gè)錨框標(biāo)記的四個(gè)偏移值。請(qǐng)注意,負(fù)類錨框的偏移量標(biāo)記為零。
labels[0]
tensor([[-0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, 1.40e+00, 1.00e+01, 2.59e+00, 7.18e+00, -1.20e+00, 2.69e-01, 1.68e+00, -1.57e+00, -0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, -5.71e-01, -1.00e+00, 4.17e-06, 6.26e-01]])
labels[0]
array([[-0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, 1.40e+00, 1.00e+01, 2.59e+00, 7.18e+00, -1.20e+00, 2.69e-01, 1.68e+00, -1.57e+00, -0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, -5.71e-01, -1.00e+00, 4.17e-06, 6.26e-01]])
14.4.4。預(yù)測(cè)具有非最大抑制的邊界框
在預(yù)測(cè)期間,我們?yōu)閳D像生成多個(gè)錨框,并為每個(gè)錨框預(yù)測(cè)類別和偏移量。 因此根據(jù)具有預(yù)測(cè)偏移量的錨框獲得預(yù)測(cè)邊界框。下面我們實(shí)現(xiàn)offset_inverse將錨點(diǎn)和偏移預(yù)測(cè)作為輸入并應(yīng)用逆偏移變換以返回預(yù)測(cè)的邊界框坐標(biāo)的函數(shù)。
#@save def offset_inverse(anchors, offset_preds): """Predict bounding boxes based on anchor boxes with predicted offsets.""" anc = d2l.box_corner_to_center(anchors) pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2] pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:] pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1) predicted_bbox = d2l.box_center_to_corner(pred_bbox) return predicted_bbox
#@save def offset_inverse(anchors, offset_preds): """Predict bounding boxes based on anchor boxes with predicted offsets.""" anc = d2l.box_corner_to_center(anchors) pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2] pred_bbox_wh = np.exp(offset_preds[:, 2:] / 5) * anc[:, 2:] pred_bbox = np.concatenate((pred_bbox_xy, pred_bbox_wh), axis=1) predicted_bbox = d2l.box_center_to_corner(pred_bbox) return predicted_bbox
當(dāng)有很多錨框時(shí),可能會(huì)輸出許多相似(具有顯著重疊)的預(yù)測(cè)邊界框來(lái)包圍同一對(duì)象。為了簡(jiǎn)化輸出,我們可以使用非最大抑制(NMS)合并屬于同一對(duì)象的相似預(yù)測(cè)邊界框 。
以下是非極大值抑制的工作原理。對(duì)于預(yù)測(cè)的邊界框 B,對(duì)象檢測(cè)模型計(jì)算每個(gè)類別的預(yù)測(cè)可能性。表示為p最大的預(yù)測(cè)似然,對(duì)應(yīng)于這個(gè)概率的類就是預(yù)測(cè)的類B. 具體來(lái)說(shuō),我們參考p作為 預(yù)測(cè)邊界框的置信度(分?jǐn)?shù))B. 在同一張圖片上,將所有預(yù)測(cè)的非背景邊界框按照置信度降序排序,生成列表L. 然后我們操作排序列表L在以下步驟中:
選擇預(yù)測(cè)的邊界框B1以最高的信心L作為基礎(chǔ)并刪除所有非基礎(chǔ)預(yù)測(cè)邊界框,其 IoU 為B1超過(guò)預(yù)定義的閾值?從L. 在此刻, L保留具有最高置信度的預(yù)測(cè)邊界框,但丟棄與它太相似的其他邊界框。簡(jiǎn)而言之,那些具有非最大置信度分?jǐn)?shù)的被 抑制。
選擇預(yù)測(cè)的邊界框B2具有第二高的置信度L作為另一個(gè)基礎(chǔ)并刪除所有非基礎(chǔ)預(yù)測(cè)邊界框,其 IoU 與B2超過(guò) ?從L.
重復(fù)上述過(guò)程,直到所有預(yù)測(cè)的邊界框在 L已被用作基礎(chǔ)。此時(shí),任意一對(duì)預(yù)測(cè)邊界框的IoU在L低于閾值 ?; 因此,沒(méi)有一對(duì)彼此太相似。
輸出列表中所有預(yù)測(cè)的邊界框L.
以下nms函數(shù)按降序?qū)χ眯哦鹊梅诌M(jìn)行排序并返回它們的索引。
#@save def nms(boxes, scores, iou_threshold): """Sort confidence scores of predicted bounding boxes.""" B = torch.argsort(scores, dim=-1, descending=True) keep = [] # Indices of predicted bounding boxes that will be kept while B.numel() > 0: i = B[0] keep.append(i) if B.numel() == 1: break iou = box_iou(boxes[i, :].reshape(-1, 4), boxes[B[1:], :].reshape(-1, 4)).reshape(-1) inds = torch.nonzero(iou <= iou_threshold).reshape(-1) B = B[inds + 1] return torch.tensor(keep, device=boxes.device)
#@save def nms(boxes, scores, iou_threshold): """Sort confidence scores of predicted bounding boxes.""" B = scores.argsort()[::-1] keep = [] # Indices of predicted bounding boxes that will be kept while B.size > 0: i = B[0] keep.append(i) if B.size == 1: break iou = box_iou(boxes[i, :].reshape(-1, 4), boxes[B[1:], :].reshape(-1, 4)).reshape(-1) inds = np.nonzero(iou <= iou_threshold)[0] B = B[inds + 1] return np.array(keep, dtype=np.int32, ctx=boxes.ctx)
我們定義以下內(nèi)容multibox_detection以將非最大抑制應(yīng)用于預(yù)測(cè)邊界框。如果您發(fā)現(xiàn)實(shí)現(xiàn)有點(diǎn)復(fù)雜,請(qǐng)不要擔(dān)心:我們將在實(shí)現(xiàn)后立即通過(guò)具體示例展示它是如何工作的。
#@save def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5, pos_threshold=0.009999999): """Predict bounding boxes using non-maximum suppression.""" device, batch_size = cls_probs.device, cls_probs.shape[0] anchors = anchors.squeeze(0) num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2] out = [] for i in range(batch_size): cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4) conf, class_id = torch.max(cls_prob[1:], 0) predicted_bb = offset_inverse(anchors, offset_pred) keep = nms(predicted_bb, conf, nms_threshold) # Find all non-`keep` indices and set the class to background all_idx = torch.arange(num_anchors, dtype=torch.long, device=device) combined = torch.cat((keep, all_idx)) uniques, counts = combined.unique(return_counts=True) non_keep = uniques[counts == 1] all_id_sorted = torch.cat((keep, non_keep)) class_id[non_keep] = -1 class_id = class_id[all_id_sorted] conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted] # Here `pos_threshold` is a threshold for positive (non-background) # predictions below_min_idx = (conf < pos_threshold) class_id[below_min_idx] = -1 conf[below_min_idx] = 1 - conf[below_min_idx] pred_info = torch.cat((class_id.unsqueeze(1), conf.unsqueeze(1), predicted_bb), dim=1) out.append(pred_info) return torch.stack(out)
#@save def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5, pos_threshold=0.009999999): """Predict bounding boxes using non-maximum suppression.""" device, batch_size = cls_probs.ctx, cls_probs.shape[0] anchors = np.squeeze(anchors, axis=0) num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2] out = [] for i in range(batch_size): cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4) conf, class_id = np.max(cls_prob[1:], 0), np.argmax(cls_prob[1:], 0) predicted_bb = offset_inverse(anchors, offset_pred) keep = nms(predicted_bb, conf, nms_threshold) # Find all non-`keep` indices and set the class to background all_idx = np.arange(num_anchors, dtype=np.int32, ctx=device) combined = np.concatenate((keep, all_idx)) unique, counts = np.unique(combined, return_counts=True) non_keep = unique[counts == 1] all_id_sorted = np.concatenate((keep, non_keep)) class_id[non_keep] = -1 class_id = class_id[all_id_sorted].astype('float32') conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted] # Here `pos_threshold` is a threshold for positive (non-background) # predictions below_min_idx = (conf < pos_threshold) class_id[below_min_idx] = -1 conf[below_min_idx] = 1 - conf[below_min_idx] pred_info = np.concatenate((np.expand_dims(class_id, axis=1), np.expand_dims(conf, axis=1), predicted_bb), axis=1) out.append(pred_info) return np.stack(out)
現(xiàn)在讓我們將上述實(shí)現(xiàn)應(yīng)用到一個(gè)有四個(gè)錨框的具體例子中。為簡(jiǎn)單起見(jiàn),我們假設(shè)預(yù)測(cè)的偏移量全為零。這意味著預(yù)測(cè)的邊界框是錨框。對(duì)于背景、狗和貓中的每個(gè)類別,我們還定義了它的預(yù)測(cè)可能性。
anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95], [0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]]) offset_preds = torch.tensor([0] * anchors.numel()) cls_probs = torch.tensor([[0] * 4, # Predicted background likelihood [0.9, 0.8, 0.7, 0.1], # Predicted dog likelihood [0.1, 0.2, 0.3, 0.9]]) # Predicted cat likelihood
anchors = np.array([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95], [0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]]) offset_preds = np.array([0] * d2l.size(anchors)) cls_probs = np.array([[0] * 4, # Predicted background likelihood [0.9, 0.8, 0.7, 0.1], # Predicted dog likelihood [0.1, 0.2, 0.3, 0.9]]) # Predicted cat likelihood
我們可以繪制這些預(yù)測(cè)的邊界框及其對(duì)圖像的置信度。
fig = d2l.plt.imshow(img) show_bboxes(fig.axes, anchors * bbox_scale, ['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])
fig = d2l.plt.imshow(img) show_bboxes(fig.axes, anchors * bbox_scale, ['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])
現(xiàn)在我們可以調(diào)用該multibox_detection函數(shù)來(lái)執(zhí)行非極大值抑制,其中閾值設(shè)置為 0.5。請(qǐng)注意,我們?cè)趶埩枯斎胫袨槭纠砑恿艘粋€(gè)維度。
我們可以看到返回結(jié)果的shape為(batch size, anchor boxes number, 6)。最里面維度的六個(gè)元素給出了相同預(yù)測(cè)邊界框的輸出信息。第一個(gè)元素是預(yù)測(cè)的類別索引,它從 0 開(kāi)始(0 是狗,1 是貓)。值 -1 表示背景或非最大抑制中的去除。第二個(gè)元素是預(yù)測(cè)邊界框的置信度。剩下的四個(gè)元素是(x,y)分別為預(yù)測(cè)邊界框的左上角和右下角的軸坐標(biāo)(范圍在 0 和 1 之間)。
output = multibox_detection(cls_probs.unsqueeze(dim=0), offset_preds.unsqueeze(dim=0), anchors.unsqueeze(dim=0), nms_threshold=0.5) output
tensor([[[ 0.00, 0.90, 0.10, 0.08, 0.52, 0.92], [ 1.00, 0.90, 0.55, 0.20, 0.90, 0.88], [-1.00, 0.80, 0.08, 0.20, 0.56, 0.95], [-1.00, 0.70, 0.15, 0.30, 0.62, 0.91]]])
output = multibox_detection(np.expand_dims(cls_probs, axis=0), np.expand_dims(offset_preds, axis=0), np.expand_dims(anchors, axis=0), nms_threshold=0.5) output
array([[[ 1. , 0.9 , 0.55, 0.2 , 0.9 , 0.88], [ 0. , 0.9 , 0.1 , 0.08, 0.52, 0.92], [-1. , 0.8 , 0.08, 0.2 , 0.56, 0.95], [-1. , 0.7 , 0.15, 0.3 , 0.62, 0.91]]])
去除那些-1類的預(yù)測(cè)邊界框后,我們可以輸出非最大抑制保留的最終預(yù)測(cè)邊界框。
fig = d2l.plt.imshow(img) for i in output[0].detach().numpy(): if i[0] == -1: continue label = ('dog=', 'cat=')[int(i[0])] + str(i[1]) show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)
fig = d2l.plt.imshow(img) for i in output[0].asnumpy(): if i[0] == -1: continue label = ('dog=', 'cat=')[int(i[0])] + str(i[1]) show_bboxes(fig.axes, [np.array(i[2:]) * bbox_scale], label)
在實(shí)踐中,我們甚至可以在執(zhí)行非最大抑制之前刪除具有較低置信度的預(yù)測(cè)邊界框,從而減少該算法的計(jì)算量。我們還可以對(duì)非最大抑制的輸出進(jìn)行后處理,例如,只保留對(duì)最終輸出具有更高置信度的結(jié)果。
14.4.5。概括
我們以圖像的每個(gè)像素為中心生成具有不同形狀的錨框。
Intersection over union (IoU),也稱為 Jaccard 指數(shù),衡量?jī)蓚€(gè)邊界框的相似性。它是它們的交集面積與聯(lián)合面積的比率。
在訓(xùn)練集中,我們需要為每個(gè)錨框提供兩種類型的標(biāo)簽。一個(gè)是與anchor box相關(guān)的對(duì)象的類別,另一個(gè)是ground-truth bounding box相對(duì)于anchor box的偏移量。
在預(yù)測(cè)過(guò)程中,我們可以使用非最大抑制(NMS)來(lái)去除相似的預(yù)測(cè)邊界框,從而簡(jiǎn)化輸出。
14.4.6。練習(xí)
更改函數(shù)中的sizes和的值 。生成的anchor boxes有什么變化?ratiosmultibox_prior
構(gòu)造和可視化兩個(gè) IoU 為 0.5 的邊界框。它們?nèi)绾蜗嗷ブ丿B?
修改14.4.3 節(jié)和 14.4.4 節(jié)anchors中的 變量。結(jié)果如何變化?
非極大值抑制是一種貪心算法,它通過(guò)移除預(yù)測(cè)的邊界框來(lái)抑制它們。有沒(méi)有可能其中一些被刪除的實(shí)際上有用?如何修改此算法以軟抑制?你可以參考 Soft-NMS ( Bodla et al. , 2017 )。
與其手工制作,不如學(xué)習(xí)非極大值抑制?
-
算法
+關(guān)注
關(guān)注
23文章
4628瀏覽量
93183 -
pytorch
+關(guān)注
關(guān)注
2文章
808瀏覽量
13322
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論