1電阻器失效模式與機理
失效模式:各種失效的現(xiàn)象及其表現(xiàn)的形式。
失效機理:是導致失效的物理、化學、熱力學或其他過程。
01電阻器的失效模式與機理
開路:主要失效機理為電阻膜燒毀或大面積脫落,基體斷裂,引線帽與電阻體脫落。
阻值漂移超規(guī)范:電阻膜有缺陷或退化,基體有可動鈉離子,保護涂層不良。
引線斷裂:電阻體焊接工藝缺陷,焊點污染,引線機械應力損傷。
短路:銀的遷移,電暈放電。
02失效模式占失效總比例表
03失效模式機理分析
電阻器失效機理是多方面的,工作條件或環(huán)境條件下所發(fā)生的各種理化過程是引起電阻器老化的原因。
導電材料的結構變化:
薄膜電阻器的導電膜層一般用汽相淀積方法獲得,在一定程度上存在無定型結構。按熱力學觀點,無定型結構均有結晶化趨勢。在工作條件或環(huán)境條件下,導電膜層中的無定型結構均以一定的速度趨向結晶化,也即導電材料內(nèi)部結構趨于致密化,能常會引起電阻值的下降。結晶化速度隨溫度升高而加快。
電阻線或電阻膜在制備過程中都會承受機械應力,使其內(nèi)部結構發(fā)生畸變,線徑愈小或膜層愈薄,應力影響愈顯著。一般可采用熱處理方法消除內(nèi)應力,殘余內(nèi)應力則可能在長時間使用過程中逐步消除,電阻器的阻值則可能因此發(fā)生變化。
結晶化過程和內(nèi)應力清除過程均隨時間推移而減緩,但不可能在電阻器使用期間終止??梢哉J為在電阻器工作期內(nèi)這兩個過程以近似恒定的速度進行。與它們有關的阻值變化約占原阻值的千分之幾。
電負荷高溫老化:任何情況,電負荷均會加速電阻器老化進程,并且電負荷對加速電阻器老化的作用比升高溫度的加速老化后果更顯著,原因是電阻體與引線帽接觸部分的溫升超過了電阻體的平均溫升。通常溫度每升高10℃,壽命縮短一半。如果過負荷使電阻器溫升超過額定負荷時溫升50℃,則電阻器的壽命僅為正常情況下壽命的1/32??赏ㄟ^不到四個月的加速壽命試驗,即可考核電阻器在10年期間的工作穩(wěn)定性。
直流負荷—電解作用:直流負荷作用下,電解作用導致電阻器老化。電解發(fā)生在刻槽電阻器槽內(nèi),電阻基體所含的堿金屬離子在槽間電場中位移,產(chǎn)生離子電流。濕氣存在時,電解過程更為劇烈。如果電阻膜是碳膜或金屬膜,則主要是電解氧化;如果電阻膜是金屬氧化膜,則主要是電解還原。對于高阻薄膜電阻器,電解作用的后果可使阻值增大,沿槽螺旋的一側可能出現(xiàn)薄膜破壞現(xiàn)象。在潮熱環(huán)境下進行直流負荷試驗,可全面考核電阻器基體材料與膜層的抗氧化或抗還原性能,以及保護層的防潮性能。
硫化:
有一批現(xiàn)場儀表在某化工廠使用一年后,儀表紛紛出現(xiàn)故障。經(jīng)分析發(fā)現(xiàn)儀表中使用的厚膜貼片電阻阻值變大了,甚至變成開路了。把失效的電阻放到顯微鏡下觀察,可以發(fā)現(xiàn)電阻電極邊緣出現(xiàn)了黑色結晶物質(zhì),進一步分析成分發(fā)現(xiàn),黑色物質(zhì)是硫化銀晶體。原來電阻被來自空氣中的硫給腐蝕了。
氣體吸附與解吸:
膜式電阻器的電阻膜在晶粒邊界上,或導電顆粒和黏結劑部分,總可能吸附非常少量的氣體,它們構成了晶粒之間的中間層,阻礙了導電顆粒之間的接觸,從而明顯影響阻值。
合成膜電阻器是在常壓下制成,在真空或低氣壓工作時,將解吸部分附氣體,改善了導電顆粒之間的接觸,使阻值下降。同樣,在真空中制成的熱分解碳膜電阻器直接在正常環(huán)境條件下工作時,將因氣壓升高而吸附部分氣體,使阻值增大。如果將未刻的半成品預置在常壓下適當時間,則會提高電阻器成品的阻值穩(wěn)定性。
溫度和氣壓是影響氣體吸附與解吸的主要環(huán)境因素。對于物理吸附,降溫可增加平衡吸附量,升溫則反之。由于氣體吸附與解吸發(fā)生在電阻體的表面。所以對膜式電阻器的影響較為顯著。阻值變化可達1%~2%。
氧化:
氧化是長期起作用的因素(與吸附不同),氧化過程是由電阻體表面開始,逐步向內(nèi)部深入。除了貴金屬與合金薄膜電阻外,其他材料的電阻體均會受到空氣中氧的影響。氧化的結果是阻值增大。電阻膜層愈薄,氧化影響就更明顯。
防止氧化的根本措施是密封(金屬、陶瓷、玻璃等無機材料)。采用有機材料(塑料、樹脂等)涂覆或灌封,不能完全防止保護層透濕或透氣,雖能起到延緩氧化或吸附氣體的作用,但也會帶來與有機保護層有關的些新的老化因素。
有機保護層的影響:
有機保護層形成過程中,放出縮聚作用的揮發(fā)物或溶劑蒸氣。熱處理過程使部分揮發(fā)物擴散到電阻體中,引起阻值上升。此過程雖可持續(xù)1~2年,但顯著影響阻值的時間約為2~8個月,為了保證成品的阻值穩(wěn)定性,把產(chǎn)品在庫房中擱置一段時間再出廠是比較適宜的。
機械損傷:
電阻的可靠很大程度上取決于電阻器的機械性能。電阻體、引線帽和引出線等均應具有足夠的機械強度,基體缺陷、引線帽損壞或引線斷裂均可導致電阻器失效。
2電解電容失效
01耗盡失效
第一種解釋
通常電解電容器壽命的終了評判依據(jù)是電容量下降到額定(初始值)的80%以下。由于早期鋁電解電容器的電解液充盈,鋁電解電容器的電容量在工作早期緩慢下降。隨著負荷過程中工作電解液不斷修補倍雜質(zhì)損傷的陽極氧化膜所致電解液逐漸減少。到使用后期,由于電解液揮發(fā)而減少,粘稠度增大的電解液就難于充分接觸經(jīng)腐蝕處理的粗糙的鋁箔表面上的氧化膜層,這樣就使鋁電解電容器的極板有效面積減小,即陽極、陰極鋁箔容量減少,引起電容量急劇下降。因此,可以認為鋁電解電容器的容量降低是由于電解液揮發(fā)造成。而造成電解液的揮發(fā)的最主要的原因就是高溫環(huán)境或發(fā)熱。
第二種解釋
由于應用條件使鋁電解電容器發(fā)熱的原因是鋁電解電容器在工作在整流濾波(包括開關電源輸出的高頻整流濾波)、功率電爐的電源旁路時的紋波(或稱脈動)電流流過鋁電解電容器,在鋁電解電容器的ESR產(chǎn)生損耗并轉變成熱使其發(fā)熱。
當鋁電解電容器電解液蒸發(fā)較多、溶液變稠時,電阻率因粘稠度增大而上升,使工作電解質(zhì)的等效串聯(lián)電阻增大,導致電容器損耗明顯上升,損耗角增大。例如對于105度工作溫度的電解電容器,其最大芯包溫度高于125度時,電解液粘稠度驟增,電解液的ESR增加近十倍。.增大的等效串聯(lián)電阻會產(chǎn)生更大熱量,造成電解液的更大揮發(fā)。如此循環(huán)往復,鋁電解電容器容量急劇下降,甚至會造成爆炸。
第三種解釋
漏電流增加往往導致鋁電解電容器失效。應用電壓過高和溫度過高都會引起漏電流的增加。
02壓力釋放裝置動作
為了防止鋁電解電容器中電解液由于內(nèi)部高溫沸騰的氣體或電化學過程而產(chǎn)生的氣體而引起內(nèi)部高氣壓造成鋁電解電容器的爆炸。為了消除鋁電解電容器的爆炸,直徑8毫米以上的鋁電解電容器均設置了壓力釋放裝置,這些壓力釋放裝置在鋁電解電容器內(nèi)部的氣壓達到尚未使鋁電解電容器爆炸的危險壓力前動作,泄放出氣體。隨著鋁電解電容器的壓力釋放裝置的動作,鋁電解電容器即宣告失效。
鋁電解電容器壓力釋放裝置(中間的十字)
電化學過程導致壓力釋放裝置動作
鋁電解電容器的漏電流就是電化學過程,前面已經(jīng)詳盡論述,不再贅述。電化學過程將產(chǎn)生氣體,這些氣體的聚積將造成鋁電解電容器的內(nèi)部氣壓上升,最終達到壓力釋放裝置動作泄壓。
溫度過高導致壓力釋放裝置動作
鋁電解電容器溫度過高可能是環(huán)境溫度過高,如鋁電解電容器附近有發(fā)熱元件或整個電子裝置就出在高溫環(huán)境;
鋁電解電容器溫度過高的第二個原因是芯包溫度過高。鋁電解電容器芯包溫度過高的根本原因是鋁電解電容器流過過高的紋波電流。過高的紋波電流在鋁電解電容器的ESR中產(chǎn)生過度的損耗而產(chǎn)生過度的發(fā)熱使電解液沸騰產(chǎn)生大量氣體使鋁電解電容器內(nèi)部壓力及急劇升高時壓力釋放裝置動作。
03瞬時超溫
通常鋁電解電容器的芯包核心溫度每降低10℃,其壽命將增大到原來的一倍。這個核心大致位于電容器的中心,是電容器內(nèi)部最熱的點。可是,當電容器升溫接近其最大允許溫度時,對于大多數(shù)型號電容器在125℃時,其電解液要受到電容器芯包的排擠(driven),導致電容器的ESR增大到原來的10倍。在這種作用下,瞬間超溫或過電流可以使ESR永久性的增大,從而造成電容器失效。在高溫和大紋波電流的應用中特別要警惕瞬時超溫發(fā)生的可能,還要額外注意鋁電解電容器的冷卻。
04瞬時過電壓的產(chǎn)生
上電沖擊
上電過程中,由于濾波電感釋放儲能到濾波電容器中,導致濾波電容器的過瞬時過電壓。
電容過電壓失效的防范
電容器在過壓狀態(tài)下容易被擊穿,而實際應用中的瞬時高電壓是經(jīng)常出現(xiàn)的。
選擇承受瞬時過電壓性能好的鋁電解電容器,RIFA有的鋁電解電容器就給出了瞬時過電壓值得參數(shù)。
05電解液干涸是鋁電解電容器失效的最主要原因
電解液干涸的原因:電解液自然揮發(fā)、電解液的消耗。
電解液自然揮發(fā)
電解液的揮發(fā)速度隨溫度的升高
電解液的揮發(fā)速度與電容器的密封質(zhì)量有關,無論在高溫還是在低溫條件下都要有良好的密封性。
電解液的消耗
漏電流所引起的電化學效應消耗電解液,鋁電解電容器的壽命隨漏電流增加而減少。
漏電流隨溫度的升高而增加:25℃時漏電流僅僅是85℃時漏電流的不到十分之一漏電流隨施加電壓升高而增加:耐壓為400V的鋁電解電容器在額定電壓下的漏電流大約是90%額定電壓下的漏電流的5倍。
06電解液干涸影響鋁電解電容器壽命
影響鋁電解電容器壽命的的因素:溫度
根據(jù)鋁電解電容器的電解液的不同,鋁電解電容器的最高工作溫度可分為:
●一般用途,85℃
●一般高溫用途,105℃
●特殊高溫用途,125℃
●汽車發(fā)動機艙,140~150℃
溫度每升高10℃,壽命小時數(shù)減半。
影響鋁電解電容器壽命的的因素:額定壽命小時數(shù)
按壽命小時數(shù)鋁電解電容器可以分為:
●一般用途(常溫,3年以內(nèi)),1000小時
●一般用途(常溫,希望比較長的時間),2000小時以上
●工業(yè)級,更長的壽命小時數(shù)
影響鋁電解電容器壽命的的因素:電解液
電解液的多與寡決定鋁電解電容器的壽命。
影響鋁電解電容器壽命的的因素:應用條件
高溫縮短鋁電解電容器壽命;高紋波電流縮短鋁電解電容器壽命;工作電壓過高縮短鋁電解電容器壽命。
07影響鋁電解電容器壽命的參數(shù)與應用條件
工作電壓與漏電流的關系
溫度與漏電流的關系
某公司生產(chǎn)的450V/4700μF/85℃鋁電解電容器的漏電流與環(huán)境溫度的關系如下:
溫度、電壓、紋波電流共同作用對壽命的影響
以某電子鎮(zhèn)流器用鋁電解電容器為例。
在不同的電壓與溫度條件下的鋁電解電容器壽命不同,表格如下:
某電子鎮(zhèn)流器用鋁電解電容器降額壽命特性,如下圖:
某電子鎮(zhèn)流器用鋁電解電容器的過電壓壽命特性,如下圖:
鋁電解電容器的壽命與溫度、紋波電流的關系,如下圖:
3電感失效分析
電感器失效模式:電感量和其他性能的超差、開路、短路。
模壓繞線片式電感失效機理:
●磁芯在加工過程中產(chǎn)生的機械應力較大,未得到釋放;
●磁芯內(nèi)有雜質(zhì)或空洞磁芯材料本身不均勻,影響磁芯的磁場狀況,使磁芯的磁導率發(fā)生了偏差;
●由于燒結后產(chǎn)生的燒結裂紋;
●銅線與銅帶浸焊連接時,線圈部分濺到錫液,融化了漆包線的絕緣層,造成短路;
●銅線纖細,在與銅帶連接時,造成假焊,開路失效。
01耐焊性
低頻片感經(jīng)回流焊后感量上升20%。
由于回流焊的溫度超過了低頻片感材料的居里溫度,出現(xiàn)退磁現(xiàn)象。片感退磁后,片感材料的磁導率恢復到最大值,感量上升。一般要求的控制范圍是片感耐焊接熱后,感量上升幅度小于20%。
耐焊性可能造成的問題是有時小批量手工焊時,電路性能全部合格(此時片感未整體加熱,感量上升小)。但大批量貼片時,發(fā)現(xiàn)有部分電路性能下降。這可能是由于過回流焊后,片感感量會上升,影響了線路的性能。在對片感感量精度要求較嚴格的地方(如信號接收發(fā)射電路),應加大對片感耐焊性的關注。
檢測方法:先測量片感在常溫時的感量值,再將片感浸入熔化的焊錫罐里10秒鐘左右,取出。待片感徹底冷卻后,測量片感新的感量值。感量增大的百分比既為該片感的耐焊性大小
02可焊性
電鍍簡介
當達到回流焊的溫度時,金屬銀(Ag)會跟金屬錫(Sn)反應形成共熔物,因此不能在片感的銀端頭上直接鍍錫。而是在銀端頭上先鍍鎳(2um 左右) ,形成隔絕層,然后再鍍錫(4-8um )。
可焊性檢測
將待檢測的片感的端頭用酒精清洗干凈,將片感在熔化的焊錫罐中浸入4秒鐘左右,取出。如果片感端頭的焊錫覆蓋率達到90%以上,則可焊性合格。
可焊性不良
1)端頭氧化:當片感受高溫、潮濕、化學品、氧化性氣體(SO2、NO2等)的影響, 或保存時間過長,造成片感端頭上的金屬Sn氧化成SnO2,片感端頭變暗。由于SnO2不和Sn、 Ag、Cu等生成共熔物,導致片感可焊性下降。片感產(chǎn)品保質(zhì)期:半年。如果片感端頭被污染,比如油性物質(zhì),溶劑等,也會造成可焊性下降。
2)鍍鎳層太薄,吃銀:如果鍍鎳時,鎳層太薄不能起隔離作用?;亓骱笗r,片感端頭上的Sn和自身的Ag首先反應,而影響了片感端頭上的Sn和焊盤上的焊膏共熔,造成吃銀現(xiàn)象,片感的可焊性下降。
判斷方法:將片感浸入熔化的焊錫罐中幾秒鐘,取出。如發(fā)現(xiàn)端頭出現(xiàn)坑洼情況,甚至出現(xiàn)瓷體外露,則可判斷是出現(xiàn)吃銀現(xiàn)象的。
03焊接不良
內(nèi)應力
如果片感在制作過程中產(chǎn)生了較大的內(nèi)部應力,且未采取措施消除應力,在回流焊過程中,貼好的片感會因為內(nèi)應力的影響產(chǎn)生立片,俗稱立碑效應。
判斷片感是否存在較大的內(nèi)應力,可采取一個較簡便的方法:取幾百只的片感,放入一般的烤箱或低溫爐中,升溫至230℃左右,保溫,觀察爐內(nèi)情況。如聽見噼噼叭叭的響聲,甚至有片子跳起來的聲音,說明產(chǎn)品有較大的內(nèi)應力。
元件變形
如果片感產(chǎn)品有彎曲變形,焊接時會有放大效應。
焊盤設計不當:
MLCI在熔焊后的各項要素:
a.焊盤兩端應對稱設計,避免大小不一,否則兩端的熔融時間和潤濕力會不同
b.焊合的長度在0.3mm以上(即片感的金屬端頭和焊盤的重合長度)
c.焊盤余地的長度盡量小,一般不超過0.5mm。
d.焊盤的本身寬度不宜太寬,其合理寬度和MLCI寬度相比,不宜超過0.25mm
貼片不良
當貼片時,由于焊墊的不平或焊膏的滑動,造成片感偏移了θ角。由于焊墊熔融時產(chǎn)生的潤濕力,可能形成以上三種情況,其中自行歸正為主,但有時會出現(xiàn)拉的更斜,或者單點拉正的情況,片感被拉到一個焊盤上,甚至被拉起來,斜立或直立(立碑現(xiàn)象)。目前帶θ角偏移視覺檢測的貼片機可減少此類失效的發(fā)生。
焊接溫度
回流焊機的焊接溫度曲線須根據(jù)焊料的要求設定,應該盡量保證片感兩端的焊料同時熔融,以避免兩端產(chǎn)生潤濕力的時間不同,導致片感在焊接過程中出現(xiàn)移位。如出現(xiàn)焊接不良,可先確認一下,回流焊機溫度是否出現(xiàn)異常,或者焊料有所變更。
電感在急冷、急熱或局部加熱的情況下易破損,因此焊接時應特別注意焊接溫度的控制,同時盡可能縮短焊接接觸時間。
04上機開路
虛焊、焊接接觸不良
從線路板上取下片感測試,片感性能是否正常
電流燒穿
如選取的片感,磁珠的額定電流較小,或電路中存在大的沖擊電流會造成電流燒穿,片感或磁珠 失效,導致電路開路。從線路板上取下片感測試,片感失效,有時有燒壞的痕跡。如果出現(xiàn)電流燒穿,失效的產(chǎn)品數(shù)量會較多,同批次中失效產(chǎn)品一般達到百分級以上。
焊接開路
回流焊時急冷急熱,使片感內(nèi)部產(chǎn)生應力,導致有極少部分的內(nèi)部存在開路隱患的片感的缺陷變大,造成片感開路。從線路板上取下片感測試,片感失效。如果出現(xiàn)焊接開路,失效的產(chǎn)品數(shù)量一般較少,同批次中失效產(chǎn)品一般小于千分級。
05磁體破損
磁體強度
片感燒結不好或其它原因,造成瓷體強度不夠,脆性大,在貼片時,或產(chǎn)品受外力沖擊造成瓷體破損
附著力
如果片感端頭銀層的附著力差,回流焊時,片感急冷急熱,熱脹冷縮產(chǎn)生應力,以及瓷體受外力沖擊,均有可能會造成片感端頭和瓷體分離、脫落;或者焊盤太大,回流焊時,焊膏熔融和端頭反應時產(chǎn)生的潤濕力大于端頭附著力,造成端頭破壞。
片感過燒或生燒,或者制造過程中,內(nèi)部產(chǎn)生微裂紋?;亓骱笗r急冷急熱,使片感內(nèi)部產(chǎn)生應力,出現(xiàn)晶裂,或微裂紋擴大,造成瓷體破損。
審核編輯:湯梓紅
-
電阻
+關注
關注
87文章
5576瀏覽量
173383 -
電容
+關注
關注
100文章
6114瀏覽量
151798 -
電阻器
+關注
關注
21文章
3839瀏覽量
62613 -
電感
+關注
關注
54文章
6162瀏覽量
103011 -
失效分析
+關注
關注
18文章
222瀏覽量
66614
發(fā)布評論請先 登錄
相關推薦
評論