0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

GPU引領(lǐng)的深度學(xué)習(xí)

星星科技指導(dǎo)員 ? 來(lái)源:mouser ? 作者:M. Tim Jones ? 2023-05-09 09:58 ? 次閱讀

早期的機(jī)器學(xué)習(xí)以搜索為基礎(chǔ),主要依靠進(jìn)行過(guò)一定優(yōu)化的暴力方法。但是隨著機(jī)器學(xué)習(xí)逐漸成熟,它開始專注于加速技術(shù)已經(jīng)很成熟的統(tǒng)計(jì)方法和優(yōu)化問(wèn)題。同時(shí)深度學(xué)習(xí)的問(wèn)世更是帶來(lái)原本可能無(wú)法實(shí)現(xiàn)的優(yōu)化方法。本文將介紹現(xiàn)代機(jī)器學(xué)習(xí)如何找到兼顧規(guī)模和速度的新方法。

AI領(lǐng)域的轉(zhuǎn)變

在本系列的第1部分中,我們探討了AI的一些歷史,以及從Lisp到現(xiàn)代編程語(yǔ)言以及深度學(xué)習(xí)等新型計(jì)算智能范式的歷程。我們還討論了人工智能的早期應(yīng)用,它們依賴于經(jīng)過(guò)優(yōu)化的搜索形式、在海量數(shù)據(jù)集上進(jìn)行訓(xùn)練的現(xiàn)代神經(jīng)網(wǎng)絡(luò)架構(gòu),同時(shí)解決了十年前還被認(rèn)為不可能的難題。然而目前仍有兩大難題有待解決,即:如何進(jìn)一步加速這些應(yīng)用,以及將它們限制在智能手機(jī)這樣的功耗優(yōu)化環(huán)境中。

今天,深度學(xué)習(xí)成為了多數(shù)加速技術(shù)的重點(diǎn)研究對(duì)象。深度學(xué)習(xí)是一種神經(jīng)網(wǎng)絡(luò)架構(gòu),它依賴于多層神經(jīng)網(wǎng)絡(luò),其中的每一層都可以支持不同的功能以進(jìn)行特征檢測(cè)。這些深層神經(jīng)網(wǎng)絡(luò)依賴于可方便運(yùn)用并行計(jì)算的矢量運(yùn)算, 并為神經(jīng)網(wǎng)絡(luò)層分布式計(jì)算以及同層諸多神經(jīng)元并行計(jì)算創(chuàng)造了條件。

通過(guò)GPU加速機(jī)器學(xué)習(xí)

圖形處理單元(GPU)最初并不是用于加速深度學(xué)習(xí)應(yīng)用。GPU是一種特殊的設(shè)備,用于加速輸出到顯示設(shè)備的幀緩沖區(qū)(內(nèi)存)的構(gòu)建。它將渲染后的圖像存入幀緩沖區(qū),而不是依靠處理器來(lái)完成。GPU由數(shù)以千計(jì)的獨(dú)立內(nèi)核組成,它們并行運(yùn)行并執(zhí)行矢量運(yùn)算等特定類型的計(jì)算。盡管最初GPU專為視頻應(yīng)用而設(shè)計(jì),但人們發(fā)現(xiàn)它們也可以加速矩陣乘法等科學(xué)計(jì)算。

開發(fā)人員既可以借助于GPU供應(yīng)商提供的API將GPU處理功能集成到應(yīng)用中,也可以采用適用于諸多不同環(huán)境的標(biāo)準(zhǔn)軟件包方式。R編程語(yǔ)言和編程環(huán)境包含與GPU協(xié)同工作來(lái)加快處理速度的軟件包,例如gputools、gmatrix和gpuR。GPU也可以通過(guò)numba軟件包或Theano等各種庫(kù)借助于Python進(jìn)行編程。

通過(guò)這些軟件包,任何有意將GPU加速應(yīng)用于機(jī)器學(xué)習(xí)的人都可以達(dá)成愿望。但是工程師們還在研究更專門的方法。2019年,英特爾?以20億美元的價(jià)格收購(gòu)了Habana Labs, 一家致力于為服務(wù)器中的機(jī)器學(xué)習(xí)加速器開發(fā)定制芯片公司。此外,英特爾還于2017年以150億美元收購(gòu)了自動(dòng)駕駛芯片技術(shù)企業(yè)Mobileye。

定制芯片和指令

除了服務(wù)器和臺(tái)式機(jī)中的GPU加速之外,用于機(jī)器學(xué)習(xí)的加速器正在試圖超越傳統(tǒng)平臺(tái),進(jìn)軍功耗受限的嵌入式設(shè)備和智能手機(jī)。這些加速器形式多樣,包括U盤、API、智能手機(jī)神經(jīng)網(wǎng)絡(luò)加速器以及用于深度學(xué)習(xí)加速的矢量指令等。

適用于智能手機(jī)的深度學(xué)習(xí)

深度學(xué)習(xí)工具包已經(jīng)從PC端延伸到智能手機(jī),可為存在更多限制的網(wǎng)絡(luò)提供支持。TensorFlow Lite和Core ML等框架已經(jīng)部署在用于機(jī)器學(xué)習(xí)應(yīng)用的移動(dòng)設(shè)備上。Apple?最近發(fā)布了A12 Bionic芯片,這款芯片包括一個(gè)8核神經(jīng)網(wǎng)絡(luò)引擎,用于開發(fā)更加節(jié)能的神經(jīng)網(wǎng)絡(luò)應(yīng)用, 從而擴(kuò)展Apple智能手機(jī)上的深度學(xué)習(xí)應(yīng)用。

Google發(fā)布了適用于Android? 8.1并具有機(jī)器學(xué)習(xí)功能的神經(jīng)網(wǎng)絡(luò)API (NNAPI), 目前已應(yīng)用于Google Lens自然語(yǔ)言處理和圖像識(shí)別背景下的Google Assistant。NNAPI與其他深度學(xué)習(xí)工具包相似,但它是針對(duì)Android智能手機(jī)環(huán)境及其資源限制而構(gòu)建的。

深度學(xué)習(xí)USB

英特爾發(fā)布了其新版神經(jīng)計(jì)算棒,以U盤的形式加速深度學(xué)習(xí)應(yīng)用。TensorFlow、Caffe和PyTorch等眾多機(jī)器學(xué)習(xí)框架都可以使用它。當(dāng)沒(méi)有GPU可用時(shí),這將是一個(gè)不錯(cuò)的選擇,同時(shí)還可以快速構(gòu)建深度學(xué)習(xí)應(yīng)用原型。

深度學(xué)習(xí)指令

最后,在機(jī)器學(xué)習(xí)計(jì)算從CPU轉(zhuǎn)移到GPU的同時(shí),英特爾使用新的指令優(yōu)化了其Xeon指令集,來(lái)加速深度學(xué)習(xí)。這些被稱為AVX-512擴(kuò)展的新指令(所謂的矢量神經(jīng)網(wǎng)絡(luò)指令或VNNi)提高了卷積神經(jīng)網(wǎng)絡(luò)運(yùn)算的處理量。

總結(jié)

GPU在機(jī)器學(xué)習(xí)中的應(yīng)用實(shí)現(xiàn)了在眾多應(yīng)用中構(gòu)建和部署大規(guī)模深度神經(jīng)網(wǎng)絡(luò)的能力。機(jī)器學(xué)習(xí)框架使構(gòu)建深度學(xué)習(xí)應(yīng)用變得簡(jiǎn)單。智能手機(jī)供應(yīng)商也不甘人后,為受到諸多限制的應(yīng)用集成了高能效的神經(jīng)網(wǎng)絡(luò)加速器(以及用于定制應(yīng)用的API)?,F(xiàn)在市面上還有其他可轉(zhuǎn)移到USB硬件上的加速器,許多新的初創(chuàng)公司也在加大加速器領(lǐng)域的投入,為未來(lái)機(jī)器學(xué)習(xí)應(yīng)用做準(zhǔn)備。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4760

    瀏覽量

    129130
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8428

    瀏覽量

    132832
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5510

    瀏覽量

    121334
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    相比GPU和GPP,F(xiàn)PGA是深度學(xué)習(xí)的未來(lái)?

    相比GPU和GPP,F(xiàn)PGA在滿足深度學(xué)習(xí)的硬件需求上提供了具有吸引力的替代方案。憑借流水線并行計(jì)算的能力和高效的能耗,F(xiàn)PGA將在一般的深度學(xué)習(xí)
    發(fā)表于 07-28 12:16 ?7488次閱讀

    FPGA在深度學(xué)習(xí)應(yīng)用中或?qū)⑷〈?b class='flag-5'>GPU

    現(xiàn)場(chǎng)可編程門陣列 (FPGA) 解決了 GPU 在運(yùn)行深度學(xué)習(xí)模型時(shí)面臨的許多問(wèn)題 在過(guò)去的十年里,人工智能的再一次興起使顯卡行業(yè)受益匪淺。英偉達(dá) (Nvidia) 和 AMD 等公司的股價(jià)也大幅
    發(fā)表于 03-21 15:19

    新手小白怎么學(xué)GPU云服務(wù)器跑深度學(xué)習(xí)?

    新手小白想用GPU云服務(wù)器跑深度學(xué)習(xí)應(yīng)該怎么做? 用個(gè)人主機(jī)通常pytorch可以跑但是LexNet,AlexNet可能就直接就跑不動(dòng),如何實(shí)現(xiàn)更經(jīng)濟(jì)便捷的實(shí)現(xiàn)GPU云服務(wù)器
    發(fā)表于 06-11 17:09

    深度學(xué)習(xí)框架TensorFlow&TensorFlow-GPU詳解

    TensorFlow&TensorFlow-GPU深度學(xué)習(xí)框架TensorFlow&TensorFlow-GPU的簡(jiǎn)介、安裝、使用方法詳細(xì)攻略
    發(fā)表于 12-25 17:21

    Mali GPU支持tensorflow或者caffe等深度學(xué)習(xí)模型嗎

    Mali GPU 支持tensorflow或者caffe等深度學(xué)習(xí)模型嗎? 好像caffe2go和tensorflow lit可以部署到ARM,但不知道是否支持在GPU運(yùn)行?我希望把訓(xùn)
    發(fā)表于 09-16 14:13

    什么是深度學(xué)習(xí)?使用FPGA進(jìn)行深度學(xué)習(xí)的好處?

    上述分類之外,還被用于多項(xiàng)任務(wù)(下面顯示了四個(gè)示例)。在 FPGA 上進(jìn)行深度學(xué)習(xí)的好處我們已經(jīng)提到,許多服務(wù)和技術(shù)都使用深度學(xué)習(xí),而 GPU
    發(fā)表于 02-17 16:56

    深度學(xué)習(xí)方案ASIC、FPGA、GPU比較 哪種更有潛力

    幾乎所有深度學(xué)習(xí)的研究者都在使用GPU,但是對(duì)比深度學(xué)習(xí)硬鑒方案,ASIC、FPGA、GPU三種
    發(fā)表于 02-02 15:21 ?1.1w次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>方案ASIC、FPGA、<b class='flag-5'>GPU</b>比較 哪種更有潛力

    GPU和GPP相比誰(shuí)才是深度學(xué)習(xí)的未來(lái)

    相比GPU和GPP,F(xiàn)PGA在滿足深度學(xué)習(xí)的硬件需求上提供了具有吸引力的替代方案。憑借流水線并行計(jì)算的能力和高效的能耗,F(xiàn)PGA將在一般的深度學(xué)習(xí)
    發(fā)表于 10-18 15:48 ?1506次閱讀

    GPU引領(lǐng)深度學(xué)習(xí)

    早期的機(jī)器學(xué)習(xí)以搜索為基礎(chǔ),主要依靠進(jìn)行過(guò)一定優(yōu)化的暴力方法。但是隨著機(jī)器學(xué)習(xí)逐漸成熟,它開始專注于加速技術(shù)已經(jīng)很成熟的統(tǒng)計(jì)方法和優(yōu)化問(wèn)題。同時(shí)深度學(xué)習(xí)的問(wèn)世更是帶來(lái)原本可能無(wú)法實(shí)現(xiàn)的
    發(fā)表于 02-26 06:11 ?5次下載
    <b class='flag-5'>GPU</b><b class='flag-5'>引領(lǐng)</b>的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>

    GPU 引領(lǐng)深度學(xué)習(xí)

    GPU 引領(lǐng)深度學(xué)習(xí)
    的頭像 發(fā)表于 01-04 11:17 ?746次閱讀

    深度學(xué)習(xí)如何挑選GPU?

    NVIDIA的標(biāo)準(zhǔn)庫(kù)使在CUDA中建立第一個(gè)深度學(xué)習(xí)庫(kù)變得非常容易。早期的優(yōu)勢(shì)加上NVIDIA強(qiáng)大的社區(qū)支持意味著如果使用NVIDIA GPU,則在出現(xiàn)問(wèn)題時(shí)可以輕松得到支持。
    發(fā)表于 07-12 11:49 ?577次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>如何挑選<b class='flag-5'>GPU</b>?

    GPU的張量核心: 深度學(xué)習(xí)的秘密武器

    GPU最初是為圖形渲染而設(shè)計(jì)的,但是由于其卓越的并行計(jì)算能力,它們很快被引入深度學(xué)習(xí)中。深度學(xué)習(xí)的迅速發(fā)展離不開計(jì)算機(jī)圖形處理單元(
    的頭像 發(fā)表于 09-26 08:29 ?997次閱讀
    <b class='flag-5'>GPU</b>的張量核心: <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的秘密武器

    GPU深度學(xué)習(xí)中的應(yīng)用與優(yōu)勢(shì)

    人工智能的飛速發(fā)展,深度學(xué)習(xí)作為其重要分支,正在推動(dòng)著諸多領(lǐng)域的創(chuàng)新。在這個(gè)過(guò)程中,GPU扮演著不可或缺的角色。就像超級(jí)英雄電影中的主角一樣,GPU
    的頭像 發(fā)表于 12-06 08:27 ?1407次閱讀
    <b class='flag-5'>GPU</b>在<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>中的應(yīng)用與優(yōu)勢(shì)

    深度學(xué)習(xí)GPU加速效果如何

    圖形處理器(GPU)憑借其強(qiáng)大的并行計(jì)算能力,成為加速深度學(xué)習(xí)任務(wù)的理想選擇。
    的頭像 發(fā)表于 10-17 10:07 ?212次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是
    的頭像 發(fā)表于 10-27 11:13 ?438次閱讀