能量轉(zhuǎn)換系統(tǒng)必定存在能耗,雖然實(shí)際應(yīng)用中無法獲得100%的轉(zhuǎn)換效率,但是,一個(gè)高質(zhì)量的電源效率可以達(dá)到非常高的水平,效率接近95%。絕大多數(shù)電源IC的工作效率可以在特定的工作條件下測得,數(shù)據(jù)資料中給出了這些參數(shù)。一般廠商會(huì)給出實(shí)際測量的結(jié)果,但我們只能對我們自己的數(shù)據(jù)擔(dān)保。圖1給出了一個(gè)SMPS降壓轉(zhuǎn)換器的電路實(shí)例,轉(zhuǎn)換效率可以達(dá)到97%,即使在輕載時(shí)也能保持較高效率。采用什么秘訣才能達(dá)到如此高的效率?我們最好從了解SMPS損耗的公共問題開始,開關(guān)電源的損耗大部分來自開關(guān)器件(MOSFET和二極管),另外小部分損耗來自電感和電容。但是,如果使用非常廉價(jià)的電感和電容(具有較高電阻),將會(huì)導(dǎo)致?lián)p耗明顯增大。選擇IC時(shí),需要考慮控制器的架構(gòu)和內(nèi)部元件,以期獲得高效指標(biāo)。例如,圖1采用了多種方法來降低損耗,其中包括:同步整流,芯片內(nèi)部集成低導(dǎo)通電阻的MOSFET,低靜態(tài)電流和跳脈沖控制模式。我們將在本文展開討論這些措施帶來的好處。
圖1.降壓轉(zhuǎn)換器集成了低導(dǎo)通電阻的MOSFET,采用同步整流,效率曲線如圖示
降壓型SMPS
損耗是任何SMPS架構(gòu)都面臨的問題,我們在此以圖2所示降壓型(或buck)轉(zhuǎn)換器為例進(jìn)行討論,圖中標(biāo)明各點(diǎn)的開關(guān)波形,用于后續(xù)計(jì)算。
降壓轉(zhuǎn)換器的主要功能是把一個(gè)較高的直流輸入電壓轉(zhuǎn)換成較低的直流輸出電壓。為了達(dá)到這個(gè)要求,MOSFET以固定頻率(fS),在脈寬調(diào)制信號(hào)(PWM)的控制下進(jìn)行開、關(guān)操作。當(dāng)MOSFET導(dǎo)通時(shí),輸入電壓給電感和電容(L和COUT)充電,通過它們把能量傳遞給負(fù)載。在此期間,電感電流線性上升,電流回路如圖2中的回路1所示。
當(dāng)MOSFET斷開時(shí),輸入電壓斷開與電感的連接,電感和輸出電容為負(fù)載供電。電感電流線性下降,電流流過二極管,電流回路如圖中的環(huán)路2所示。MOSFET的導(dǎo)通時(shí)間定義為PWM信號(hào)的占空比(D)。D把每個(gè)開關(guān)周期分成[D×tS]和[(1-D)×tS]兩部分,它們分別對應(yīng)于MOSFET的導(dǎo)通時(shí)間(環(huán)路1)和二極管的導(dǎo)通時(shí)間(環(huán)路2)。所有SMPS拓?fù)?降壓、反相等)都采用這種方式劃分開關(guān)周期,實(shí)現(xiàn)電壓轉(zhuǎn)換。
對于降壓轉(zhuǎn)換電路,較大的占空比將向負(fù)載傳輸較多的能量,平均輸出電壓增加。相反,占空比較低時(shí),平均輸出電壓也會(huì)降低。根據(jù)這個(gè)關(guān)系,可以得到以下理想情況下(不考慮二極管或MOSFET的壓降)降壓型SMPS的轉(zhuǎn)換公式:
VOUT=D×VIN
IIN=D×IOUT
需要注意的是,任何SMPS在一個(gè)開關(guān)周期內(nèi)處于某個(gè)狀態(tài)的時(shí)間越長,那么它在這個(gè)狀態(tài)所造成的損耗也越大。對于降壓型轉(zhuǎn)換器,D越低(相應(yīng)的VOUT越低),回路2產(chǎn)生的損耗也大。
01開關(guān)器件的損耗MOSFET傳導(dǎo)損耗
圖2(以及其它絕大多數(shù)DC-DC轉(zhuǎn)換器拓?fù)?中的MOSFET和二極管是造成功耗的主要因素。相關(guān)損耗主要包括兩部分:傳導(dǎo)損耗和開關(guān)損耗。
MOSFET和二極管是開關(guān)元件,導(dǎo)通時(shí)電流流過回路。器件導(dǎo)通時(shí),傳導(dǎo)損耗分別由MOSFET的導(dǎo)通電阻(RDS(ON))和二極管的正向?qū)妷簺Q定。
MOSFET的傳導(dǎo)損耗(PCOND(MOSFET))近似等于導(dǎo)通電阻RDS(ON)、占空比(D)和導(dǎo)通時(shí)MOSFET的平均電流(IMOSFET(AVG))的乘積。
PCOND(MOSFET)(使用平均電流)=IMOSFET(AVG)2×RDS(ON)×D
上式給出了SMPS中MOSFET傳導(dǎo)損耗的近似值,但它只作為電路損耗的估算值,因?yàn)殡娏骶€性上升時(shí)所產(chǎn)生的功耗大于由平均電流計(jì)算得到的功耗。對于“峰值”電流,更準(zhǔn)確的計(jì)算方法是對電流峰值和谷值(圖3中的IV和IP)之間的電流波形的平方進(jìn)行積分得到估算值。
圖3.典型的降壓型轉(zhuǎn)換器的MOSFET電流波形,用于估算MOSFET的傳導(dǎo)損耗
下式給出了更準(zhǔn)確的估算損耗的方法,利用IP和IV之間電流波形I2的積分替代簡單的I2項(xiàng)。
PCOND(MOSFET)=[(IP3-IV3)/3]×RDS(ON)×D
=[(IP3-IV3)/3]×RDS(ON)×VOUT/VIN
式中,IP和IV分別對應(yīng)于電流波形的峰值和谷值,如圖3所示。MOSFET電流從IV線性上升到IP,例如:如果IV為0.25A,IP為1.75A,RDS(ON)為0.1Ω,VOUT為VIN/2(D=0.5),基于平均電流(1A)的計(jì)算結(jié)果為:
PCOND(MOSFET)(使用平均電流)=12×0.1×0.5=0.050W
利用波形積分進(jìn)行更準(zhǔn)確的計(jì)算:
PCOND(MOSFET)(使用電流波形積分進(jìn)行計(jì)算)=[(1.753-0.253)/3]×0.1×0.5=0.089W
或近似為78%,高于按照平均電流計(jì)算得到的結(jié)果。對于峰均比較小的電流波形,兩種計(jì)算結(jié)果的差別很小,利用平均電流計(jì)算即可滿足要求。
02二極管傳導(dǎo)損耗
MOSFET的傳導(dǎo)損耗與RDS(ON)成正比,二極管的傳導(dǎo)損耗則在很大程度上取決于正向?qū)妷?VF)。二極管通常比MOSFET損耗更大,二極管損耗與正向電流、VF和導(dǎo)通時(shí)間成正比。由于MOSFET斷開時(shí)二極管導(dǎo)通,二極管的傳導(dǎo)損耗(PCOND(DIODE))近似為:
PCOND(DIODE)=IDIODE(ON)×VF×(1-D)
式中,IDIODE(ON)為二極管導(dǎo)通期間的平均電流。圖2所示,二極管導(dǎo)通期間的平均電流為IOUT,因此,對于降壓型轉(zhuǎn)換器,PCOND(DIODE)可以按照下式估算:
PCOND(DIODE)=IOUT×VF×(1-VOUT/VIN)
與MOSFET功耗計(jì)算不同,采用平均電流即可得到比較準(zhǔn)確的功耗計(jì)算結(jié)果,因?yàn)槎O管損耗與I成正比,而不是I2。
顯然,MOSFET或二極管的導(dǎo)通時(shí)間越長,傳導(dǎo)損耗也越大。對于降壓型轉(zhuǎn)換器,輸出電壓越低,二極管產(chǎn)生的功耗也越大,因?yàn)樗幱趯?dǎo)通狀態(tài)的時(shí)間越長。
03開關(guān)動(dòng)態(tài)損耗
由于開關(guān)損耗是由開關(guān)的非理想狀態(tài)引起的,很難估算MOSFET和二極管的開關(guān)損耗,器件從完全導(dǎo)通到完全關(guān)閉或從完全關(guān)閉到完全導(dǎo)通需要一定時(shí)間,在這個(gè)過程中會(huì)產(chǎn)生功率損耗。圖4所示MOSFET的漏源電壓(VDS)和漏源電流(IDS)的關(guān)系圖可以很好地解釋MOSFET在過渡過程中的開關(guān)損耗,從上半部分波形可以看出,tSW(ON)和tSW(OFF)期間電壓和電流發(fā)生瞬變,MOSFET的電容進(jìn)行充電、放電。
圖4所示,VDS降到最終導(dǎo)通狀態(tài)(=ID×RDS(ON))之前,滿負(fù)荷電流(ID)流過MOSFET。相反,關(guān)斷時(shí),VDS在MOSFET電流下降到零值之前逐漸上升到關(guān)斷狀態(tài)的最終值。開關(guān)過程中,電壓和電流的交疊部分即為造成開關(guān)損耗的來源,從圖4可以清楚地看到這一點(diǎn)。
圖4.開關(guān)損耗發(fā)生在MOSFET通、斷期間的過渡過程
開關(guān)損耗隨著SMPS頻率的升高而增大,這一點(diǎn)很容易理解,隨著開關(guān)頻率提高(周期縮短),開關(guān)過渡時(shí)間所占比例增大,從而增大開關(guān)損耗。開關(guān)轉(zhuǎn)換過程中,開關(guān)時(shí)間是占空比的二十分之一對于效率的影響要遠(yuǎn)遠(yuǎn)小于開關(guān)時(shí)間為占空比的十分之一的情況。由于開關(guān)損耗和頻率有很大的關(guān)系,工作在高頻時(shí),開關(guān)損耗將成為主要的損耗因素。MOSFET的開關(guān)損耗(PSW(MOSFET))可以按照圖3所示三角波進(jìn)行估算,公式如下:
PSW(MOSFET)=0.5×VD×ID×(tSW(ON)+tSW(OFF))×fS
其中,VD為MOSFET關(guān)斷期間的漏源電壓,ID是MOSFET導(dǎo)通期間的溝道電流,tSW(ON)和tSW(OFF)是導(dǎo)通和關(guān)斷時(shí)間。對于降壓電路轉(zhuǎn)換,VIN是MOSFET關(guān)斷時(shí)的電壓,導(dǎo)通時(shí)的電流為IOUT。
為了驗(yàn)證MOSFET的開關(guān)損耗和傳導(dǎo)損耗,圖5給出了降壓轉(zhuǎn)換器中集成高端MOSFET的典型波形:VDS和IDS。電路參數(shù)為:VIN=10V、VOUT=3.3V、IOUT=500mA、RDS(ON)=0.1Ω、fS=1MHz、開關(guān)瞬變時(shí)間(tON+tOFF)總計(jì)為38ns。
在圖5可以看出,開關(guān)變化不是瞬間完成的,電流和電壓波形交疊部分導(dǎo)致功率損耗。MOSFET“導(dǎo)通”時(shí)(圖2),流過電感的電流IDS線性上升,與導(dǎo)通邊沿相比,斷開時(shí)的開關(guān)損耗更大。
利用上述近似計(jì)算法,MOSFET的平均損耗可以由下式計(jì)算:
PT(MOSFET)=PCOND(MOSFET)+PSW(MOSFET)
=[(I13-I03)/3]×RDS(ON)×VOUT/VIN+0.5×VIN×IOUT×(tSW(ON)+tSW(OFF))×fS
=[(13-03)/3]×0.1×3.3/10+0.5×10×0.5×(38×10-9)×1×106
=0.011+0.095=106mW
這一結(jié)果與圖5下方曲線測量得到的117.4mW接近,注意:這種情況下,fS足夠高,PSW(MOSFET)是功耗的主要因素。
圖5.降壓轉(zhuǎn)換器高端MOSFET的典型開關(guān)周期,輸入10V、輸出3.3V(輸出電流500mA)。開關(guān)頻率為1MHz,開關(guān)轉(zhuǎn)換時(shí)間是38ns
與MOSFET相同,二極管也存在開關(guān)損耗。這個(gè)損耗很大程度上取決于二極管的反向恢復(fù)時(shí)間(tRR),二極管開關(guān)損耗發(fā)生在二極管從正向?qū)ǖ椒聪蚪刂沟霓D(zhuǎn)換過程。
當(dāng)反向電壓加在二級(jí)管兩端時(shí),正向?qū)娏髟诙O管上產(chǎn)生的累積電荷需要釋放,產(chǎn)生反向電流尖峰(IRR(PEAK)),極性與正向?qū)娏飨喾矗瑥亩斐蒝×I功率損耗,因?yàn)榉聪蚧謴?fù)期內(nèi),反向電壓和反向電流同時(shí)存在于二極管。圖6給出了二極管在反向恢復(fù)期間的PN結(jié)示意圖。
圖6.二極管結(jié)反偏時(shí),需要釋放正向?qū)ㄆ陂g的累積電荷,產(chǎn)生峰值電流(IRR(PEAK))
了解了二極管的反向恢復(fù)特性,可以由下式估算二極管的開關(guān)損耗(PSW(DIODE)):
PSW(DIODE)=0.5×VREVERSE×IRR(PEAK)×tRR2×fS
其中,VREVERSE是二極管的反向偏置電壓,IRR(PEAK)是反向恢復(fù)電流的峰值,tRR2是從反向電流峰值IRR到恢復(fù)電流為正的時(shí)間。對于降壓電路,當(dāng)MOSFET導(dǎo)通的時(shí)候,VIN為MOSFET導(dǎo)通時(shí)二極管的反向偏置電壓。
為了驗(yàn)證二極管損耗計(jì)算公式,圖7顯示了典型的降壓轉(zhuǎn)換器中PN結(jié)的開關(guān)波形,VIN=10V、VOUT=3.3V,測得IRR(PEAK)=250mA、IOUT=500mA、fS=1MHz、tRR2=28ns、VF=0.9V。利用這些數(shù)值可以得到:
該結(jié)果接近于圖7所示測量結(jié)果358.7mW??紤]到較大的VF和較長的二極管導(dǎo)通周期,tRR時(shí)間非常短,開關(guān)損耗(PSW(DIODE))在二極管損耗中占主導(dǎo)地位。
圖7.降壓型轉(zhuǎn)換器中PN結(jié)開關(guān)二極管的開關(guān)波形,從10V輸入降至3.3V輸出,輸出電流為500mA。其它參數(shù)包括:1MHz的fS,tRR2為28ns,VF=0.9V
提高效率
基于上述討論,通過哪些途徑可以降低電源的開關(guān)損耗呢?直接途徑是:選擇低導(dǎo)通電阻RDS(ON)、可快速切換的MOSFET;選擇低導(dǎo)通壓降VF、可快速恢復(fù)的二極管。
直接影響MOSFET導(dǎo)通電阻的因素有幾點(diǎn),通常增加芯片尺寸和漏源極擊穿電壓(VBR(DSS)),由于增加了器件中的半導(dǎo)體材料,有助于降低導(dǎo)通電阻RDS(ON)。另一方面,較大的MOSFET會(huì)增大開關(guān)損耗。因此,雖然大尺寸MOSFET降低了RDS(ON),但也導(dǎo)致小器件可以避免的效率問題。當(dāng)管芯溫度升高時(shí),MOSFET導(dǎo)通電阻會(huì)相應(yīng)增大。必須保持較低的結(jié)溫,使導(dǎo)通電阻RDS(ON)不會(huì)過大。導(dǎo)通電阻RDS(ON)和柵源偏置電壓成反比,因此,推薦使用足夠大的柵極電壓以降低RDS(ON)損耗,但此時(shí)也會(huì)增大柵極驅(qū)動(dòng)損耗,需要平衡降低RDS(ON)的好處和增大柵極驅(qū)動(dòng)的缺陷。MOSFET的開關(guān)損耗與器件電容有關(guān),較大的電容需要較長的充電時(shí)間,使開關(guān)切換變緩,消耗更多能量。米勒電容通常在MOSFET數(shù)據(jù)資料中定義為反向傳輸電容(CRSS)或柵-漏電容(CGD),在開關(guān)過程中對切換時(shí)間起決定作用。米勒電容的充電電荷用QGD表示,為了快速切換MOSFET,要求盡可能低的米勒電容。一般來說,MOSFET的電容和芯片尺寸成反比,因此必須折衷考慮開關(guān)損耗和傳導(dǎo)損耗,同時(shí)也要謹(jǐn)慎選擇電路的開關(guān)頻率。對于二極管,必須降低導(dǎo)通壓降,以降低由此產(chǎn)生的損耗。對于小尺寸、額定電壓較低的硅二極管,導(dǎo)通壓降一般在0.7V到1.5V之間。二極管的尺寸、工藝和耐壓等級(jí)都會(huì)影響導(dǎo)通壓降和反向恢復(fù)時(shí)間,大尺寸二極管通常具有較高的VF和tRR,這會(huì)造成比較大的損耗。開關(guān)二極管一般以速度劃分,分為“高速”、“甚高速”和“超高速”二極管,反向恢復(fù)時(shí)間隨著速度的提高而降低。快恢復(fù)二極管的tRR為幾百納秒,而超高速快恢復(fù)二極管的tRR為幾十納秒。低功耗應(yīng)用中,替代快恢復(fù)二極管的一種選擇是肖特基二極管,這種二極管的恢復(fù)時(shí)間幾乎可以忽略,反向恢復(fù)電壓VF也只有快恢復(fù)二極管的一半(0.4V至1V),但肖特基二極管的額定電壓和電流遠(yuǎn)遠(yuǎn)低于快恢復(fù)二極管,無法用于高壓或大功率應(yīng)用。另外,肖特基二極管與硅二極管相比具有較高的反向漏電流,但這些因素并不限制它在許多電源中的應(yīng)用。然而,在一些低壓應(yīng)用中,即便是具有較低壓降的肖特基二極管,所產(chǎn)生的傳導(dǎo)損耗也無法接受。比如,在輸出為1.5V的電路中,即使使用0.5V導(dǎo)通壓降VF的肖特基二極管,二極管導(dǎo)通時(shí)也會(huì)產(chǎn)生33%的輸出電壓損耗!為了解決這一問題,可以選擇低導(dǎo)通電阻RDS(ON)的MOSFET實(shí)現(xiàn)同步控制架構(gòu)。用MOSFET取代二極管(對比圖1和圖2電路),它與電源的主MOSFET同步工作,所以在交替切換的過程中,保證只有一個(gè)導(dǎo)通。導(dǎo)通的二極管由導(dǎo)通的MOSFET所替代,二極管的高導(dǎo)通壓降VF被轉(zhuǎn)換成MOSFET的低導(dǎo)通壓降(MOSFETRDS(ON)×I),有效降低了二極管的傳導(dǎo)損耗。當(dāng)然,同步整流與二極管相比也只是降低了MOSFET的壓降,另一方面,驅(qū)動(dòng)同步整流MOSFET的功耗也不容忽略。IC數(shù)據(jù)資料以上討論了影響開關(guān)電源效率的兩個(gè)重要因素(MOSFET和二極管)?;仡檲D1所示降壓電路,從數(shù)據(jù)資料中可以獲得影響控制器IC工作效率的主要因素。首先,開關(guān)元件集成在IC內(nèi)部,可以節(jié)省空間、降低寄生損耗。其次,使用低導(dǎo)通電阻RDS(ON)的MOSFET,在小尺寸集成降壓IC(如MAX1556)中,其NMOS和PMOS的導(dǎo)通電阻可以達(dá)到0.27Ω(典型值)和0.19Ω(典型值)。最后,使用的同步整流電路。對于500mA負(fù)載,占空比為50%的開關(guān)電路,可以將低邊開關(guān)(或二極管)的損耗從225mW(假設(shè)二極管壓降為1V)降至34mW。合理選擇SMPSIC合理選擇SMPSIC的封裝、控制架構(gòu),并進(jìn)行合理設(shè)計(jì),可以有效提高轉(zhuǎn)換效率。
04集成功率開關(guān)
功率開關(guān)集成到IC內(nèi)部時(shí)可以省去繁瑣的MOSFET或二極管選擇,而且使電路更加緊湊,由于降低了線路損耗和寄生效應(yīng),可以在一定程度上提高效率。根據(jù)功率等級(jí)和電壓限制,可以把MOSFET、二極管(或同步整流MOSFET)集成到芯片內(nèi)部。將開關(guān)集成到芯片內(nèi)部的另一個(gè)好處是柵極驅(qū)動(dòng)電路的尺寸已經(jīng)針對片內(nèi)MOSFET進(jìn)行了優(yōu)化,因而無需將時(shí)間浪費(fèi)在未知的分立MOSFET上。
靜態(tài)電流
電池供電設(shè)備特別關(guān)注IC規(guī)格中的靜態(tài)電流(IQ),它是維持電路工作所需的電流。重載情況下(大于十倍或百倍的靜態(tài)電流IQ),IQ對效率的影響并不明顯,因?yàn)樨?fù)載電流遠(yuǎn)大于IQ,而隨著負(fù)載電流的降低,效率有下降的趨勢,因?yàn)镮Q對應(yīng)的功率占總功率的比例提高。這一點(diǎn)對于大多數(shù)時(shí)間處于休眠模式或其它低功耗模式的應(yīng)用尤其重要,許多消費(fèi)類產(chǎn)品即使在“關(guān)閉”狀態(tài)下,也需要保持鍵盤掃描或其它功能的供電,這時(shí),無疑需要選擇具有極低IQ的電源。
電源架構(gòu)對效率的提高
SMPS的控制架構(gòu)是影響開關(guān)電源效率的關(guān)鍵因素之一。這一點(diǎn)我們已經(jīng)在同步整流架構(gòu)中討論過,由于采用低導(dǎo)通電阻的MOSFET取代了功耗較大的開關(guān)二極管,可有效改善效率指標(biāo)。
另一種重要的控制架構(gòu)是針對輕載工作或較寬的負(fù)載范圍設(shè)計(jì)的,即跳脈沖模式,也稱為脈沖頻率調(diào)制(PFM)。與單純的PWM開關(guān)操作(在重載和輕載時(shí)均采用固定的開關(guān)頻率)不同,跳脈沖模式下轉(zhuǎn)換器工作在跳躍的開關(guān)周期,可以節(jié)省不必要的開關(guān)操作,進(jìn)而提高效率。
跳脈沖模式下,在一段較長時(shí)間內(nèi)電感放電,將能量從電感傳遞給負(fù)載,以維持輸出電壓。當(dāng)然,隨著負(fù)載吸收電流,輸出電壓也會(huì)跌落。當(dāng)電壓跌落到設(shè)置門限時(shí),將開啟一個(gè)新的開關(guān)周期,為電感充電并補(bǔ)充輸出電壓。
需要注意的是跳脈沖模式會(huì)產(chǎn)生與負(fù)載相關(guān)的輸出噪聲,這些噪聲由于分布在不同頻率(與固定頻率的PWM控制架構(gòu)不同),很難濾除。
先進(jìn)的SMPSIC會(huì)合理利用兩者的優(yōu)勢:重載時(shí)采用恒定PWM頻率;輕載時(shí)采用跳脈沖模式以提高效率,圖1所示IC即提供了這樣的工作模式。
當(dāng)負(fù)載增加到一個(gè)較高的有效值時(shí),跳脈沖波形將轉(zhuǎn)換到固定PWM,在標(biāo)稱負(fù)載下噪聲很容易濾除。在整個(gè)工作范圍內(nèi),器件根據(jù)需要選擇跳脈沖模式和PWM模式,保持整體的最高效率(圖8)。
圖8中的曲線D、E、F所示效率曲線在固定PWM模式下,輕載時(shí)效率較低,但在重載時(shí)能夠提供很高的轉(zhuǎn)換效率(高達(dá)98%)。如果設(shè)置在輕載下保持固定PWM工作模式,IC將不會(huì)按照負(fù)載情況更改工作模式。這種情況下能夠使紋波保持在固定頻率,但浪費(fèi)了一定功率。重載時(shí),維持PWM開關(guān)操作所需的額外功率很小,遠(yuǎn)遠(yuǎn)低于輸出功率。另一方面,跳脈沖“空閑”模式下的效率曲線(圖8中的A、B、C)能夠在輕載時(shí)保持在較高水平,因?yàn)殚_關(guān)只在負(fù)載需要時(shí)開啟。對7V輸入曲線,在1mA負(fù)載的空閑模式下能夠獲得高于60%的效率。
圖8.降壓轉(zhuǎn)換器在PWM和空閑(跳脈沖)模式下效率曲線,注意:輕載時(shí),空閑模式下的效率高于PWM模式
優(yōu)化SMPS
開關(guān)電源因其高效率指標(biāo)得到廣泛應(yīng)用,但其效率仍然受SMPS電路的一些固有損耗的制約。設(shè)計(jì)開關(guān)電源時(shí),需要仔細(xì)研究造成SMPS損耗的來源,合理選擇SMPSIC,從而充分利用器件的優(yōu)勢,為了在保持盡可能低的電路成本,甚至不增加電路成本的前提下獲得高效的SMPS,工程師需要做出全面的選擇。
05無源元件損耗
我們已經(jīng)了解MOSFET和二極管會(huì)導(dǎo)致SMPS損耗。采用高品質(zhì)的開關(guān)器件能夠大大提升效率,但它們并不是唯一能夠優(yōu)化電源效率的元件。
圖1詳細(xì)介紹了一個(gè)典型的降壓型轉(zhuǎn)換器IC的基本電路。集成了兩個(gè)同步整流MOSFET,低RDS(ON)MOSFET,效率很高。這個(gè)電路中,開關(guān)元件集成在IC內(nèi)部,已經(jīng)為具體應(yīng)用預(yù)先選擇了元器件。然而,為了進(jìn)一步提高效率,設(shè)計(jì)人員還需關(guān)注無源元件—外部電感和電容,了解它們對功耗的影響。
06電感功耗阻性損耗
電感功耗包括線圈損耗和磁芯損耗兩個(gè)基本因素,線圈損耗歸結(jié)于線圈的直流電阻(DCR),磁芯損耗歸結(jié)于電感的磁特性。
DCR定義為以下電阻公式:
式中,ρ為線圈材料的電阻系數(shù),l為線圈長度,A為線圈橫截面積。
DCR將隨著線圈長度的增大而增大,隨著線圈橫截面積的增大而減小。可以利用該原則判斷標(biāo)準(zhǔn)電感,確定所要求的不同電感值和尺寸。對一個(gè)固定的電感值,電感尺寸較小時(shí),為了保持相同匝數(shù)必須減小線圈的橫截面積,因此導(dǎo)致DCR增大;對于給定的電感尺寸,小電感值通常對應(yīng)于小的DCR,因?yàn)檩^少的線圈數(shù)減少了線圈長度,可以使用線徑較粗的導(dǎo)線。
已知DCR和平均電感電流(具體取決于SMPS拓?fù)?,電感的電阻損耗(PL(DCR))可以用下式估算:
PL(DCR)=LAVG2×DCR
這里,IL(AVG)是流過電感的平均直流電流。對于降壓轉(zhuǎn)換器,平均電感電流是直流輸出電流。盡管DCR的大小直接影響電感電阻的功耗,該功耗與電感電流的平方成正比,因此,減小DCR是必要的。
另外,還需要注意的是:利用電感的平均電流計(jì)算PL(DCR)(如上述公式)時(shí),得到的結(jié)果略低于實(shí)際損耗,因?yàn)閷?shí)際電感電流為三角波。本文前面介紹的MOSFET傳導(dǎo)損耗計(jì)算中,利用對電感電流的波形進(jìn)行積分可以獲得更準(zhǔn)確的結(jié)果。更準(zhǔn)確。當(dāng)然也更復(fù)雜的計(jì)算公式如下:
PL(DCR)=(IP3-IV3)/3×DCR
式中IP和IV為電感電流波形的峰值和谷值。
07磁芯損耗
磁芯損耗并不像傳導(dǎo)損耗那樣容易估算,很難估測。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。SMPS中,盡管平均直流電流流過電感,由于通過電感的開關(guān)電壓的變化產(chǎn)生的紋波電流導(dǎo)致磁芯周期性的磁通變化。
磁滯損耗源于每個(gè)交流周期中磁芯偶極子的重新排列所消耗的功率,可以將其看作磁場極性變化時(shí)偶極子相互摩擦產(chǎn)生的“摩擦”損耗,正比于頻率和磁通密度。
相反,渦流損耗則是磁芯中的時(shí)變磁通量引入的。由法拉第定律可知:交變磁通產(chǎn)生交變電壓。因此,這個(gè)交變電壓會(huì)產(chǎn)生局部電流,在磁芯電阻上產(chǎn)生I2R損耗。
磁芯材料對磁芯損耗的影響很大。SMPS電源中普遍使用的電感是鐵粉磁芯,鐵鎳鉬磁粉芯(MPP)的損耗最低,鐵粉芯成本最低,但磁芯損耗較大。
磁芯損耗可以通過計(jì)算磁芯磁通密度(B)的最大變化量估算,然后查看電感或鐵芯制造商提供的磁通密度和磁芯損耗(和頻率)圖表。峰值磁通密度可以通過幾種方式計(jì)算,公式可以在電感數(shù)據(jù)資料中的磁芯損耗曲線中找到。
相應(yīng)地,如果磁芯面積和線圈數(shù)已知,可利用下式估計(jì)峰值磁通:
這里,B是峰值磁通密度(高斯),L是線圈電感(亨),ΔI是電感紋波電流峰峰值(安培),A是磁芯橫截面積(cm2),N是線圈匝數(shù)。
隨著互聯(lián)網(wǎng)的普及,可以方便地從網(wǎng)上下載資料、搜索器件信息,一些制造商提供了交互式電感功耗的計(jì)算軟件,幫助設(shè)計(jì)者估計(jì)功耗。使用這些工具能夠快捷、準(zhǔn)確地估計(jì)應(yīng)用電路中的功率損耗。例如,Coilcraft提供的在線電感磁芯損耗和銅耗計(jì)算公式,簡單輸入一些數(shù)據(jù)即可得到所選電感的磁芯損耗和銅耗。
08電容損耗
與理想的電容模型相反,電容元件的實(shí)際物理特性導(dǎo)致了幾種損耗。電容在SMPS電路中主要起穩(wěn)壓、濾除輸入/輸出噪聲的作用(圖1),電容的這些損耗降低了開關(guān)電源的效率。這些損耗主要表現(xiàn)在三個(gè)方面:等效串聯(lián)電阻損耗、漏電流損耗和電介質(zhì)損耗。
電容的阻性損耗顯而易見。既然電流在每個(gè)開關(guān)周期流入、流出電容,電容固有的電阻(RC)將造成一定功耗。漏電流損耗是由于電容絕緣材料的電阻(RL)導(dǎo)致較小電流流過電容而產(chǎn)生的功率損耗。電介質(zhì)損耗比較復(fù)雜,由于電容兩端施加了交流電壓,電容電場發(fā)生變化,從而使電介質(zhì)分子極化造成功率損耗。
圖9.電容損耗模型一般簡化為一個(gè)等效串聯(lián)電阻(ESR)
所有三種損耗都體現(xiàn)在電容的典型損耗模型中(圖9左邊部分),用電阻代表每項(xiàng)損耗。與電容儲(chǔ)能相關(guān)的每項(xiàng)損耗的功率用功耗系數(shù)(DF)表示,或損耗角正切(δ)。每項(xiàng)損耗的DF可以通過由電容阻抗的實(shí)部與虛部比得到,可以將每項(xiàng)損耗分別插入模型中。
為簡化損耗模型,圖9中的接觸電阻損耗、漏電流損耗和電介質(zhì)損耗集中等為一個(gè)等效串聯(lián)電阻(ESR)。ESR定義為電容阻抗中消耗有功功率的部分。
推算電容阻抗模型、計(jì)算ESR(結(jié)果的實(shí)部)時(shí),ESR是頻率的函數(shù)。這種相關(guān)性可以在下面簡化的ESR等式中得到證明:
式中,DFR、DFL和DFD是接觸電阻、漏電流和電介質(zhì)損耗的功耗系數(shù)。
利用這個(gè)等式,我們可以觀察到隨著信號(hào)頻率的增加,漏電流損耗和電介質(zhì)損耗都有所減小,直到接觸電阻損耗從一個(gè)較高頻點(diǎn)開始占主導(dǎo)地位。在該頻點(diǎn)(式中沒有包括該參數(shù))以上,ESR因?yàn)楦哳l交流電流的趨膚效應(yīng)趨于增大。
許多電容制造商提供ESR曲線圖表示ESR與頻率的關(guān)系。例如,TDK為其大多數(shù)電容產(chǎn)品提供了ESR曲線,參考這些與開關(guān)頻率對應(yīng)曲線圖,得到ESR值。
然而,如果沒有ESR曲線圖,可以通過電容數(shù)據(jù)資料中的DF規(guī)格粗略估算ESR。DF是電容的整體DF(包括所有損耗),也可以按照下式估算ESR:
無論采用哪種方法來得到ESR值,直覺告訴我們,高ESR會(huì)降低開關(guān)電源效率,既然輸入和輸出電容在每個(gè)開關(guān)周期通過ESR充電、放電。這導(dǎo)致I2×RESR功率損耗。這個(gè)損耗(PCAP(ESR))可以按照下式計(jì)算:
PCAP(ESR)=ICAP(RMS)2×RESR
式中,ICAP(RMS)是流經(jīng)電容的交流電流有效值RMS。對降壓電路的輸出電容,可以采用電感紋波電流的有效值RMS。輸入濾波電容的RMS電流的計(jì)算比較復(fù)雜,可以按照下式得到一個(gè)合理的估算值:
ICIN(RMS)=IOUT/VIN×[VOUT(VIN-VOUT)]1/2
顯然,為減小電容功率損耗,應(yīng)選擇低ESR電容,有助于SMPS電源降低紋波電流。ESR是產(chǎn)生輸出電壓紋波的主要原因,因此選擇低ESR的電容不僅僅單純提高效率,還能得到其它好處。
一般來說,不同類型電介質(zhì)的電容具有不同的ESR等級(jí)。對于特定的容量和額定電壓,鋁電解電容和鉭電容就比陶瓷電容具有更高的ESR值。聚酯和聚丙烯電容的ESR值介于它們之間,但這些電容尺寸較大,SMPS中很少使用。
對于給定類型的電容,較大容量、較低的fS能夠提供較低的ESR。大尺寸電容通常也會(huì)降低ESR,但電解電容會(huì)帶來較大的等效串聯(lián)電感。陶瓷電容被視為比較好的折中選擇,此外,電容值一定的條件下,較低的電容額定電壓也有助于減小ESR。
審核編輯:湯梓紅
-
二極管
+關(guān)注
關(guān)注
147文章
9639瀏覽量
166492 -
MOSFET
+關(guān)注
關(guān)注
147文章
7164瀏覽量
213288 -
開關(guān)電源
+關(guān)注
關(guān)注
6462文章
8337瀏覽量
482041 -
降壓轉(zhuǎn)換器
+關(guān)注
關(guān)注
7文章
1540瀏覽量
86417 -
損耗
+關(guān)注
關(guān)注
0文章
197瀏覽量
16029
原文標(biāo)題:開關(guān)電源八大處損耗
文章出處:【微信號(hào):衡麗,微信公眾號(hào):衡麗】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論