0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何測量ADC噪聲

jf_78858299 ? 來源:摩爾學堂 ? 作者:摩爾學堂 ? 2023-03-16 10:51 ? 次閱讀

今天我們將通過介紹如何測量 ADC 噪聲、ADC 數(shù)據(jù)手冊中的噪聲規(guī)格以及絕對與相對噪聲參數(shù)來繼續(xù)基本的 ADC 噪聲討論。

本系列的第 1 部分討論了電氣系統(tǒng)中的噪聲、典型信號鏈中的噪聲原因、固有的模數(shù)轉換器 (ADC) 噪聲以及高分辨率和低分辨率 ADC 中噪聲之間的差異,可在此處找到.

測量 ADC 噪聲

在我解釋德州儀器如何測量 ADC 噪聲之前,重要的是要了解,當您查看 ADC 數(shù)據(jù)表規(guī)格時,目標是表征 ADC,而不是系統(tǒng)。因此,TI 測試 ADC 噪聲的方式和測試系統(tǒng)本身應該展示 ADC 的能力,而不是測試系統(tǒng)的局限性。因此,在不同系統(tǒng)或不同條件下使用 ADC 可能會導致噪聲性能與數(shù)據(jù)表中報告的不同。

我們有兩種方法可以測量 ADC 噪聲。在第一種方法中,我們將 ADC 的輸入短接在一起,以測量由于熱噪聲導致的輸出代碼的輕微變化。第二種方法涉及輸入具有特定幅度和頻率(例如 1kHz 時的 1VPP)的正弦波,并報告 ADC 如何量化正弦波。圖 1 展示了這些類型的噪聲測量。

圖片

圖 1. 輸入短路測試設置 (a);正弦波輸入測試裝置 (b)

通常,我們會根據(jù)其目標最終應用選擇單個 ADC 的噪聲測量方法。例如,測量溫度或重量等緩慢移動信號的 delta-sigma ADC 使用輸入短路測試,該測試可精確測量直流性能。用于高速數(shù)據(jù)采集系統(tǒng)的 Delta-Sigma ADC 通常依賴于正弦波輸入方法,其中交流性能至關重要。對于許多 ADC,數(shù)據(jù)表指定了兩種類型的測量。

例如,TI的 24 位ADS127L01具有512kSPS的高最大采樣率和低通帶紋波寬帶濾波器,可為測試和測量設備實現(xiàn)高分辨率 AC 信號采樣。然而,這些應用通常也需要精確測量信號的直流分量。因此,我們不僅用多種采樣率下的一系列交流輸入信號來表征 ADC 的性能,而且使用輸入短路測試來表征 ADS127L01 的直流性能。

ADC 數(shù)據(jù)表中的噪聲規(guī)范

如果您查看 ADS127L01 的數(shù)據(jù)表(或任何 ADC 數(shù)據(jù)表,就此而言),您會看到以兩種形式報告的噪聲性能:圖形和數(shù)字。圖 2 顯示了使用幅度為 -0.5dbFS 和頻率為 4kHz 的輸入正弦波對 ADS127L01 噪聲性能的快速傅立葉變換 (FFT)。從該圖中,我們計算并報告了重要的 AC 參數(shù),例如信噪比 (SNR)、總諧波失真 (THD)、信噪比和失真 (SINAD) 以及有效位數(shù) (ENOB) .

圖片

圖 2. 具有 4kHz、-0.5dBFS 輸入信號的 ADS127L01 FFT 示例

對于 DC 性能,噪聲直方圖顯示特定增益設置、濾波器類型和采樣率的輸出代碼分布。從該圖中,我們計算并報告了重要的直流噪聲性能參數(shù),例如輸入?yún)⒖荚肼暋⒂行Х直媛屎蜔o噪聲分辨率。(注意:許多工程師將術語“ENOB”和“有效分辨率”同義地用于描述 ADC 的 DC 性能。然而,ENOB 純粹是源自 SINAD 的動態(tài)性能規(guī)范,并不意味著傳達 DC 性能。在本文的其余部分文章系列,我將相應地使用這些術語。更全面的參數(shù)定義和方程,請參見表 1。)

圖 3 顯示了 ADS127L01 的噪聲直方圖。

圖片

圖 3. ADS127L01 噪聲直方圖示例

與 FFT 圖一樣,噪聲直方圖提供有關直流噪聲性能的重要圖形信息。由于噪聲直方圖具有高斯分布,因此平均(均方根 [RMS])噪聲性能的定義通常是一個標準偏差——圖 4a 中的紅色陰影區(qū)域。

在圖 4b 中,藍色陰影區(qū)域描述了 ADC 的峰峰值 (VN,PP) 噪聲性能。由于高斯噪聲的波峰因數(shù),即峰值與平均值的比值,峰峰值噪聲以 6 或 6.6 個標準偏差給出。峰峰值噪聲定義了測量噪聲在此范圍內的統(tǒng)計概率。如果您的輸入信號也落在此范圍內,則它可能會被本底噪聲遮蔽,從而導致代碼閃爍。額外的過采樣將有助于降低峰峰值噪聲,但代價是采樣時間更長。

圖片

圖 4. ADS127L01 RMS 噪聲 (a);峰峰值噪聲 (b)

您還可以在任何 ADC 數(shù)據(jù)表的電氣特性部分中以數(shù)字形式找到上述交流和直流規(guī)范。該規(guī)則的一個例外涉及帶有集成放大器的 ADC,其中噪聲性能隨增益和數(shù)據(jù)速率而變化。在這種情況下,通常有一個單獨的噪聲表,用于輸入?yún)⒖荚肼暎≧MS 或峰峰值)、有效分辨率、無噪聲分辨率、ENOB 和 SNR 等參數(shù)。

表 1 總結了交流和直流噪聲參數(shù)、它們的定義和方程。

表 1:典型 ADC 噪聲參數(shù)及其定義和方程式

圖片

絕對與相對噪聲參數(shù)

表 1 中所有方程的一個重要特征是它們涉及一些值的比率。我們將這些定義為“相對參數(shù)”。顧名思義,這些參數(shù)提供了相對于某個絕對值的噪聲性能指標,通常是輸入信號(相對于載波的分貝 [dBc])或滿量程范圍(相對于滿量程的分貝 [dBFS])。

圖 5 顯示了使用 -0.5dBFS 輸入信號的 ADS127L01 的輸出頻譜,其中滿量程為 2.5V。如果您選擇的系統(tǒng)輸入信號不是以相同的滿量程電壓為參考,或者如果輸入信號幅度與數(shù)據(jù)表中定義的值不同,您不一定期望達到數(shù)據(jù)表的性能,即使所有您的其他輸入條件是相同的。

圖片

圖 5. ADS127L01 FFT,輸入電壓 (V IN ) 以滿量程為參考

同樣,對于 DC 噪聲參數(shù),您可以從表 1 中看出,有效分辨率與給定工作條件下以及 ADC 的 FSR 下 ADC 的輸入?yún)⒖荚肼曅阅苡嘘P。由于 FSR 取決于 ADC 的參考電壓,因此使用數(shù)據(jù)表中使用的參考電壓以外的參考電壓會對 ADC 的性能指標產生影響。

對于高分辨率 ADC,增加參考電壓會增加最大輸入動態(tài)范圍,而輸入?yún)⒖荚肼暠3植蛔?。這是因為高分辨率 ADC 噪聲性能在很大程度上與參考電壓無關。對于噪聲由最低有效位 (LSB) 大小決定的低分辨率 ADC,增加參考電壓實際上會增加輸入?yún)⒖荚肼?,而最大輸入動態(tài)范圍保持大致相同。表 2 總結了這些影響。

表 2:改變參考電壓對 ADC 噪聲參數(shù)的影響

圖片

因此,為了表征 ADC 的最大動態(tài)范圍,大多數(shù) ADC 制造商使用 FSR 最大化的假設來指定有效分辨率和無噪聲分辨率?;蛘撸瑩Q句話說,如果您的系統(tǒng)不使用最大 FSR(或制造商用來表征 ADC 的任何 FSR),您不應期望達到數(shù)據(jù)表中指定的有效或無噪聲分辨率值。

讓我們通過使用 1V 參考電壓和 ADC 來說明這一點,該 ADC 的數(shù)據(jù)表噪聲以 2.5V 的參考電壓為特征。繼續(xù)以 ADS127L01 為例,圖 6 顯示在極低功耗 (VLP) 模式下使用 2.5V 參考電壓和 2kSPS 數(shù)據(jù)速率會產生 1.34μVRMS 的輸入?yún)⒖荚肼暫?21.83 位的有效分辨率。

圖片

圖 6. ADS127L01 噪聲性能:低延遲濾波器,AVDD = 3V,DVDD = 1.8V 和 VREF = 2.5V

但是,使用 1V 參考電壓會將 FSR 降低到 2V。您可以使用該值來計算新的預期有效分辨率(動態(tài)范圍),由公式 1 給出:

圖片

改變參考電壓會降低 ADC 的 FSR,與數(shù)據(jù)表值相比,這反過來又將其有效分辨率(動態(tài)范圍)降低了 1.3 位以上。等式 2 概括了這種分辨率損失:

圖片

其中 % 利用率只是實際 FSR 與表征 ADC 噪聲的 FSR 之比。

雖然這種明顯的分辨率損失似乎是使用高分辨率 delta-sigma ADC 的一個缺點,但請記住,雖然 FSR 正在降低,但輸入?yún)⒖荚肼晠s沒有。因此,我建議使用絕對噪聲參數(shù)或直接測量的參數(shù)來執(zhí)行 ADC 噪聲分析。使用絕對噪聲參數(shù)消除了相對噪聲參數(shù)對輸入信號和參考電壓特性的依賴性。此外,絕對參數(shù)簡化了 ADC 噪聲和系統(tǒng)噪聲之間的關系。

對于 ADC 噪聲分析,我建議使用輸入?yún)⒖荚肼?。我將這句話加粗是因為使用輸入?yún)⒖荚肼晛矶x ADC 性能并不常見。事實上,大多數(shù)工程師只談論有效和無噪聲分辨率等相關參數(shù),并且在無法最大化這些值時深表擔憂。畢竟,如果您需要使用 24 位 ADC 來實現(xiàn) 16 位有效分辨率,那感覺就像您為 ADC 實際無法提供的性能付出了代價。

但是,16 位的有效分辨率并不一定會告訴您有關使用了多少 FSR 的任何信息。您可能只需要 16 位有效分辨率,但如果最小輸入信號為 50nV,您將永遠無法使用 16 位 ADC 來解決該問題。因此,高分辨率 delta-sigma ADC 的真正優(yōu)勢在于它提供的低輸入?yún)⒖荚肼曀?。這并不意味著有效分辨率不重要——只是它不是參數(shù)化系統(tǒng)的最佳方式。

最終,如果 ADC 不能同時解析最小和最大輸入信號,則最大化 SNR 或有效分辨率是無關緊要的。與有效分辨率不同,您通??梢灾苯印⑤p松地從系統(tǒng)規(guī)格中推導出 ADC 所需的輸入?yún)⒖荚肼?。這一特性使輸入相關噪聲分析對系統(tǒng)變化更加靈活。此外,它還可以輕松比較不同的 ADC,以便為任何應用選擇特定的 ADC。

在本系列文章的第三部分中,我將詳細研究一個電阻橋設計示例,使用相對和絕對噪聲參數(shù)來定義系統(tǒng)分辨率,以證明每個參數(shù)的有效性。我還將展示每種參數(shù)類型如何影響 ADC 比較和選擇。

總結要點

以下是有助于更好地理解 delta-sigma ADC 中噪聲的要點摘要:

  • 不同的測量量化不同類型的噪聲:
    • 要測量交流噪聲性能,請使用交流信號應用測試。
    • 要測量直流噪聲性能,請使用輸入短路測試。
    • ADC 終端應用通常決定噪聲測量類型。
  • 有效/無噪聲分辨率指標?通常,假設輸入信號 = FSR。
  • 有兩種類型的噪聲參數(shù):
    • 相對 – 使用測量值的比率計算。
    • 絕對值——直接測量。
  • 輸入相關噪聲是 ADC 分辨率(最小可測量信號)的絕對量度。無噪聲位和有效分辨率是描述 ADC 動態(tài)范圍的相關參數(shù)。
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 噪聲
    +關注

    關注

    13

    文章

    1122

    瀏覽量

    47416
  • adc
    adc
    +關注

    關注

    98

    文章

    6498

    瀏覽量

    544688
  • 模數(shù)轉換器

    關注

    26

    文章

    3204

    瀏覽量

    126842
收藏 人收藏

    評論

    相關推薦

    ADC噪聲測量方法和相關參數(shù)

    在解釋如何測量 ADC 噪聲之前,重要的是要了解,當您查看 ADC 數(shù)據(jù)表規(guī)格時,相關指標參數(shù)表征對象是 ADC,而不是設計的電子系統(tǒng)。因此
    發(fā)表于 05-30 12:30 ?1869次閱讀
    <b class='flag-5'>ADC</b><b class='flag-5'>噪聲</b><b class='flag-5'>測量</b>方法和相關參數(shù)

    利用ADC噪聲分析進行實際設計

    在前文中,詳細探討了 ADC 噪聲性能,從其特性和來源到如何測量和指定。 現(xiàn)在,將把前面的理論理解應用到一個實際的設計示例中。 最終,目標是為提供回答“我真正需要什么樣的噪聲性能?”這
    發(fā)表于 05-30 12:35 ?576次閱讀
    利用<b class='flag-5'>ADC</b><b class='flag-5'>噪聲</b>分析進行實際設計

    ADC輸入噪聲利弊分析

    在本文中,我們說明了所有ADC都有一定量的折合到輸入端噪聲。在精密、低頻測量應用中,以數(shù)字方式對ADC輸出數(shù)據(jù)求平均值可以降低該噪聲
    發(fā)表于 11-02 13:43 ?5540次閱讀
    <b class='flag-5'>ADC</b>輸入<b class='flag-5'>噪聲</b>利弊分析

    噪聲?壞噪聲?教你認識ADC輸入噪聲

    所有模數(shù)轉換器(ADC)都有一定數(shù)量的折合到輸入端的噪聲——它被看作一種與無噪聲ADC的輸入端串聯(lián)的噪聲源模型。不能把折合到輸入端的
    發(fā)表于 07-29 11:40 ?3.6w次閱讀

    5 計算ADC系統(tǒng)的總噪聲#ADC

    噪聲adc模擬與射頻
    EE_Voky
    發(fā)布于 :2022年08月15日 15:38:12

    4.5 計算ADC系統(tǒng)的總噪聲#ADC

    噪聲adc模擬與射頻
    EE_Voky
    發(fā)布于 :2022年08月16日 10:22:05

    ADC噪聲、ENOB及有效分辨率

    與無噪聲分辨率測量的是ADC在基礎dc的噪聲性能,它不是頻譜失真中的因素,包括總諧波失真和無寄生動態(tài)范圍。一旦知道了ADC
    發(fā)表于 11-26 16:48

    電壓基準噪聲對增量累加ADC中的DC噪聲性能的影響

    篇博文中,我將會看一看基準噪聲如何影響增量-累加ADC中的DC噪聲性能。如圖1所示,你可以用短接至中電源電壓的正負輸入來指定和測量一個ADC
    發(fā)表于 06-19 04:45

    為什么高分辨率 Δ-Σ 模數(shù)轉換器中會有噪聲?

    系列。該系列探討了典型信號鏈中的常見噪聲源,并通過降低噪聲和保持高精度測量的方法輔助理解。以下是該系列中10個最關鍵的問題和答案,可幫助您開始使用精密ADC進行設計,1.您將在
    發(fā)表于 08-08 04:45

    無線系統(tǒng)設計中的ADC噪聲測量技術

    本文介紹無線基站設計過程中ADC 噪聲測量技術,同時還說明開發(fā)CDMA 系統(tǒng)時這些測量技術對設計的影響。
    發(fā)表于 11-21 15:02 ?9次下載

    噪聲中的小信號測量

    噪聲中的小信號測量,增量累加ADC表面上看起來也許很復雜,但實際上它是由一系列簡單的部件所構成的精確數(shù)據(jù)轉換器。
    發(fā)表于 01-12 14:03 ?2832次閱讀
    <b class='flag-5'>噪聲</b>中的小信號<b class='flag-5'>測量</b>

    ADC噪聲從何而來?

    這個問題圍繞著 ADC噪聲貢獻者展開。在評估 ADC噪聲時,我們需要考慮哪些事項?噪聲可以多種方式進入
    的頭像 發(fā)表于 04-30 17:56 ?2106次閱讀
    <b class='flag-5'>ADC</b>的<b class='flag-5'>噪聲</b>從何而來?

    如何為ADC噪聲提供通道

    在考慮ADC中的噪聲時,幾乎可以將ADC視為混頻器。如果有噪聲從各種門口中的任何一個進入ADC,則噪聲
    的頭像 發(fā)表于 06-30 17:12 ?874次閱讀
    如何為<b class='flag-5'>ADC</b><b class='flag-5'>噪聲</b>提供通道

    ADC噪聲:從何而來?

    這個問題圍繞著ADC噪聲貢獻因素。在評估ADC噪聲時,我們需要考慮哪些事項?噪聲可以通過多種方式進入
    的頭像 發(fā)表于 06-30 17:13 ?1009次閱讀
    <b class='flag-5'>ADC</b><b class='flag-5'>噪聲</b>:從何而來?

    adc噪聲分析與優(yōu)化方法

    模擬-數(shù)字轉換器(ADC)是電子系統(tǒng)中的關鍵組件,用于將模擬信號轉換為數(shù)字信號。然而,ADC在轉換過程中會受到各種噪聲的影響,這些噪聲會降低信號的準確性和系統(tǒng)的性能。 1.
    的頭像 發(fā)表于 11-19 16:55 ?685次閱讀