0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Apache Storm是什么

汽車電子技術(shù) ? 來源:碼農(nóng)與軟件時代 ? 作者:碼農(nóng)與軟件時代 ? 2023-02-20 15:34 ? 次閱讀

一、概念

Apache Storm作為流數(shù)據(jù)的實時處理框架,官網(wǎng)給出了如下模型:

圖片

圖中“水龍頭”便是spout [spa?t] 出水管,“閃電”便是bolt [b??lt],“箭頭”表達的是數(shù)據(jù)的流轉(zhuǎn),“水龍頭”、“閃電”和“箭頭”組成的有向無環(huán)圖稱為Topology(拓撲)。

使用Storm框架進行流數(shù)據(jù)的實時處理,就需要編寫“水龍頭”和“閃電”的處理邏輯,并將它們通過Topology串接在一起,構(gòu)建實時處理的業(yè)務(wù)邏輯。

具體的做法是:

(1)實時數(shù)據(jù)源,如kafka,接入到“水龍頭”Spout中;

(2)Spout讀取源數(shù)據(jù)并不斷地發(fā)出數(shù)據(jù)到后續(xù)Bolt中,這些數(shù)據(jù)稱為Tuple(元組);

(3)Bolt對發(fā)送過來的數(shù)據(jù)Tuple進行處理,完成數(shù)據(jù)流轉(zhuǎn)換;

讀到這里,可能還是很迷惑,我們以常見的示例統(tǒng)計詞頻(heart.txt)來進行說明:

Take me to your heart
Take me to your soul
Give me your hand and hold me
Show me what love is
Be my guiding star
It's easy take me to your heart
Standing on a mountain high
Looking at the moon through a clear blue sky

我們可以設(shè)計一個topology:

WordSourceSpout:讀取heart.txt,并逐行發(fā)送數(shù)據(jù)流Stream,每行即為一個Tuple;
WordSplitBolt:拆分Tuple,并將單詞Tuple發(fā)出到下個Bolt;
WordCountBolt:對單詞的頻率進行累加計算;

二、編程

1.Topology是如何構(gòu)建的?

Topology是通過TopologyBuilder來構(gòu)建的,提供setSpout和setBolt方法來配置Spout和Bolt,這兩個方法都具有3個參數(shù),比較類似,以setSpout為例,第1個參數(shù)表示Stream的名稱,第2個參數(shù)表示stream的處理對象,第3個參數(shù)表示并發(fā)數(shù),也就是同時運行多少個任務(wù)來處理Stream。先來看一段代碼:

TopologyBuilder topologyBuilder = new TopologyBuilder();
WordSourceSpout spout = new WordSourceSpout();
WordSplitBolt splitBlot = new WordSplitBolt();
WordCountBolt countBlot = new WordCountBolt();
topologyBuilder.setSpout("sentences", spout, 2);
topologyBuilder.setBolt("split",splitBlot , 8).shuffleGrouping("sentences");
topologyBuilder.setBolt("count",countBlot , 8).fieldGrouping("split",new Fields(“word”));

上面定義了兩個Bolt,它們之間數(shù)據(jù)流的關(guān)聯(lián)關(guān)系:第1個Bolt聲明其輸出Stream的名稱為split,而第2個Bolt訂閱的Stream為split。countBlot 通過fieldGroupings()在word上具有相同字段的所有Tuple發(fā)送到同一個任務(wù)中進行統(tǒng)計。

2.Spout和Bolt是如何定義的?

編程模型中,Spout和Bolt都稱為組件Component。

WordSourceSpout 需要繼承BaseRichSpout,其類結(jié)構(gòu)關(guān)系為:

BaseRichSpout--繼承--BaseComponent--實現(xiàn)--IComponent
BaseRichSpout--實現(xiàn)--IRichSpout--實現(xiàn)--ISpout

ISpout接口的定義為:

public interface ISpout extends Serializable {
    /**
     * Called when a task for this component is initialized within a worker on the cluster. It provides the spout with the environment in
     * which the spout executes.
     *
     * 

This includes the: * * @param conf The Storm configuration for this spout. This is the configuration provided to the topology merged in with cluster * configuration on this machine. * @param context This object can be used to get information about this task's place within the topology, including the task id and * component id of this task, input and output information, etc. * @param collector The collector is used to emit tuples from this spout. Tuples can be emitted at any time, including the open and * close methods. The collector is thread-safe and should be saved as an instance variable of this spout object. */ void open(Map<String, Object> conf, TopologyContext context, SpoutOutputCollector collector); /** * Called when an ISpout is going to be shutdown. There is no guarentee that close will be called, because the supervisor kill -9's * worker processes on the cluster. * *

The one context where close is guaranteed to be called is a topology is killed when running Storm in local mode. */ void close(); /** * Called when a spout has been activated out of a deactivated mode. nextTuple will be called on this spout soon. A spout can become * activated after having been deactivated when the topology is manipulated using the `storm` client. */ void activate(); /** * Called when a spout has been deactivated. nextTuple will not be called while a spout is deactivated. The spout may or may not be * reactivated in the future. */ void deactivate(); /** * When this method is called, Storm is requesting that the Spout emit tuples to the output collector. This method should be * non-blocking, so if the Spout has no tuples to emit, this method should return. nextTuple, ack, and fail are all called in a tight * loop in a single thread in the spout task. When there are no tuples to emit, it is courteous to have nextTuple sleep for a short * amount of time (like a single millisecond) so as not to waste too much CPU. */ void nextTuple(); /** * Storm has determined that the tuple emitted by this spout with the msgId identifier has been fully processed. Typically, an * implementation of this method will take that message off the queue and prevent it from being replayed. */ void ack(Object msgId); /** * The tuple emitted by this spout with the msgId identifier has failed to be fully processed. Typically, an implementation of this * method will put that message back on the queue to be replayed at a later time. */ void fail(Object msgId); }

WordCountBolt需要繼承BaseBasicBolt,其類結(jié)構(gòu)關(guān)系為:

BaseBasicBolt--繼承--BaseComponent--實現(xiàn)--IBasicBolt--IComponent

IBasicBolt接口的定義為:

public interface IBasicBolt extends IComponent {
    void prepare(Map topoConf, TopologyContext context);


    /**
     * Process the input tuple and optionally emit new tuples based on the input tuple.
     *
     * 

All acking is managed for you. Throw a FailedException if you want to fail the tuple. */ void execute(Tuple input, BasicOutputCollector collector); void cleanup(); }

IComponent接口的定義:

/**
 * Common methods for all possible components in a topology. This interface is used when defining topologies using the Java API.
 */
public interface IComponent extends Serializable {


    /**
     * Declare the output schema for all the streams of this topology.
     *
     * @param declarer this is used to declare output stream ids, output fields, and whether or not each output stream is a direct stream
     */
    void declareOutputFields(OutputFieldsDeclarer declarer);


    /**
     * Declare configuration specific to this component. Only a subset of the "topology.*" configs can be overridden. The component
     * configuration can be further overridden when constructing the topology using {@link TopologyBuilder}
     */
    Map<String, Object> getComponentConfiguration();


}

Storm框架基本邏輯為:

Spout組件通過Open方法進行SpoutOutputCollector(Spout輸出收集器)的初始化,Storm調(diào)用Spout組件的nextTuple方法請求tuple時,便通過SpoutOutputCollector的emit方法發(fā)送一個tuple。Bolt組件通過execute方法接收到tuple,并對tuple進行數(shù)據(jù)處理。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 邏輯
    +關(guān)注

    關(guān)注

    2

    文章

    833

    瀏覽量

    29469
  • 編寫
    +關(guān)注

    關(guān)注

    0

    文章

    29

    瀏覽量

    8444
  • Storm框架
    +關(guān)注

    關(guān)注

    0

    文章

    3

    瀏覽量

    1529
收藏 人收藏

    評論

    相關(guān)推薦

    Storm使用場景

    Storm基礎(chǔ)(一):架構(gòu)和組件
    發(fā)表于 06-11 16:37

    Storm高階之Trident的全面介紹

    Storm高階(一):Trident
    發(fā)表于 07-29 10:18

    雅虎機器學(xué)習(xí)平臺CaffeOnSpark解讀

    Andy Feng是Apache Storm的Committer,同時也是雅虎公司負責(zé)大數(shù)據(jù)與機器學(xué)習(xí)平臺的副總裁。他帶領(lǐng)雅虎機器學(xué)習(xí)團隊基于開源的Spark和Caffe開發(fā)了深度學(xué)習(xí)框架
    發(fā)表于 10-10 11:46 ?0次下載
    雅虎機器學(xué)習(xí)平臺CaffeOnSpark解讀

    怎樣在Docker Swarm上部署Apache Storm

    本文是一篇來源于Baqend Tech博客的客座轉(zhuǎn)貼,描述了如何在Docker Swarm,而不是在虛擬機上部署和調(diào)配Apache Storm集群。這個題目很有意思,Wolfram
    發(fā)表于 10-10 14:24 ?0次下載
    怎樣在Docker Swarm上部署<b class='flag-5'>Apache</b> <b class='flag-5'>Storm</b>

    如何利用Storm完成實時分析處理數(shù)據(jù)

    Storm本身是Apache托管的開源的分布式實時計算系統(tǒng),它的前身是Twitter Storm。在Storm問世以前,處理海量的實時數(shù)據(jù)信息,大部分是類似于使用消息隊列,加上工作進程
    發(fā)表于 04-26 15:30 ?8089次閱讀
    如何利用<b class='flag-5'>Storm</b>完成實時分析處理數(shù)據(jù)

    Storm環(huán)境下基于權(quán)重的任務(wù)調(diào)度算法

    大數(shù)據(jù)流式計算平臺Apache Storm默認采用輪詢的方式進行任務(wù)調(diào)度,未考慮到拓撲中各任務(wù)計算開銷的差異以及任務(wù)之間不同類型的通信模式,在負載均衡和通信開銷方面存在較大的優(yōu)化空間。針對這一
    發(fā)表于 04-17 10:52 ?0次下載
    <b class='flag-5'>Storm</b>環(huán)境下基于權(quán)重的任務(wù)調(diào)度算法

    探討Apache kafka在部署可伸縮物聯(lián)網(wǎng)解決方案中所扮演的角色

    Apache storm、Apache spark和Apache hadoop集群提供支持的數(shù)據(jù)處理管道的網(wǎng)關(guān)。
    發(fā)表于 07-21 09:37 ?580次閱讀

    一種基于Apache Storm的增量式FFT方法

    針對傳統(tǒng)單機版批處理式的快速傅里葉變換( Fast fourier transfor,F(xiàn)FT)難以滿足工業(yè)生產(chǎn)現(xiàn)場海量流數(shù)據(jù)實時處理的需求,提出一種基于Δ pache Storm的增量式FFT方法
    發(fā)表于 04-28 14:44 ?10次下載
    一種基于<b class='flag-5'>Apache</b> <b class='flag-5'>Storm</b>的增量式FFT方法

    Apache與Weblogic的整合

    Apache與Weblogic的整合(電源技術(shù)論文錄用后可以改作者嗎)-Apache與Weblogic的整合? ? ? ? ? ? ? ? ? ? ? ?
    發(fā)表于 08-31 11:24 ?7次下載
    <b class='flag-5'>Apache</b>與Weblogic的整合

    Linux的apache

    Linux的apache(ups電源技術(shù)轉(zhuǎn)讓)-Linux的apache,有需要的可以參考!
    發(fā)表于 08-31 16:17 ?1次下載
    Linux的<b class='flag-5'>apache</b>

    Storm-Engine基于C++的開源游戲引擎

    ./oschina_soft/storm-engine.zip
    發(fā)表于 06-16 10:05 ?0次下載
    <b class='flag-5'>Storm</b>-Engine基于C++的開源游戲引擎

    Apache Doris正式成為 Apache 頂級項目

    全球最大的開源軟件基金會 Apache 軟件基金會(以下簡稱 Apache)于美國時間 2022 年?6 月 16 日宣布,Apache Doris 成功從 Apache 孵化器畢業(yè),
    的頭像 發(fā)表于 06-17 14:08 ?1011次閱讀

    Apache Storm的安裝部署

    Storm是一個免費開源的分布式實時計算系統(tǒng)。分布式意味著Storm是一個集群,部署在多臺機器上。實時便是實時計算,相比于MapReduce的批處理,實時更關(guān)注于數(shù)據(jù)處理的速度和延時。
    的頭像 發(fā)表于 02-20 15:41 ?976次閱讀
    <b class='flag-5'>Apache</b> <b class='flag-5'>Storm</b>的安裝部署

    大數(shù)據(jù)平臺有哪些 大數(shù)據(jù)技術(shù)應(yīng)用有哪些

    。   2. 實時數(shù)據(jù)處理平臺:Apache Kafka、Apache StormApache Ignite等,專注于實時數(shù)據(jù)處理和流計算,適用于流媒體、監(jiān)控和物聯(lián)網(wǎng)等場景。
    的頭像 發(fā)表于 04-16 16:14 ?1.3w次閱讀

    什么是Apache日志?Apache日志分析工具介紹

    Apache Web 服務(wù)器在企業(yè)中廣泛用于托管其網(wǎng)站和 Web 應(yīng)用程序,Apache 服務(wù)器生成的原始日志提供有關(guān) Apache 服務(wù)器托管的網(wǎng)站如何處理用戶請求以及訪問您的網(wǎng)站時經(jīng)常遇到的錯誤的重要信息。
    的頭像 發(fā)表于 01-04 10:09 ?837次閱讀