我們都知道,變頻器是從事電氣工作所應(yīng)該掌握的一種技術(shù),使用變頻器控制電機是電氣控制中較為常見的方法;有的也要求一定要熟練運用。今天小編就以淺薄的知識整理歸納相關(guān)的知識點,內(nèi)容或有重復(fù),旨在和大家分享變頻器和電機之間的那些奇妙關(guān)系。
首先,為什么要用變頻器控制電機?
我們先簡單的了解下這兩個設(shè)備。
電機是一個感性負載,它阻礙電流的變化,在啟動的時候會產(chǎn)生電流的較大變化。
變頻器,是利用電力半導(dǎo)體器件的通斷作用將工頻電源變換為另一頻率的電能控制裝置。它主要由兩部分電路構(gòu)成,一是主電路(整流模塊、電解電容和逆變模塊),二是控制電路(開關(guān)電源板、控制電路板)。
為了降低電動機的啟動電流,尤其是功率較大的電機,功率越大,啟動電流越大,過大的啟動電流會給供配電網(wǎng)絡(luò)帶來較大的負擔,而變頻器能夠解決這個啟動問題,讓電機平滑啟動,而不會引起啟動電流過大。
使用變頻器的另一個作用就是對電機進行調(diào)速,很多場合需要控制電機的轉(zhuǎn)速以獲得更好的生產(chǎn)效率,而變頻器調(diào)速一直是它最大的亮點,變頻器通過改變電源的頻率以達到控制電機轉(zhuǎn)速的目的。
變頻器控制方式都有哪些?
變頻器控制電機最常用的五種方式如下:
低壓通用變頻輸出電壓為380~650V,輸出功率為0.75~400kW,工作頻率為0~400Hz,它的主電路都采用交—直—交電路。其控制方式經(jīng)歷了以下四代。
1U/f=C的正弦脈寬調(diào)制(SPWM)控制方式
其特點是控制電路結(jié)構(gòu)簡單、成本較低,機械特性硬度也較好,能夠滿足一般傳動的平滑調(diào)速要求,已在產(chǎn)業(yè)的各個領(lǐng)域得到廣泛應(yīng)用。
但是,這種控制方式在低頻時,由于輸出電壓較低,轉(zhuǎn)矩受定子電阻壓降的影響比較顯著,使輸出最大轉(zhuǎn)矩減小。
另外,其機械特性終究沒有直流電動機硬,動態(tài)轉(zhuǎn)矩能力和靜態(tài)調(diào)速性能都還不盡如人意,且系統(tǒng)性能不高、控制曲線會隨負載的變化而變化,轉(zhuǎn)矩響應(yīng)慢、電機轉(zhuǎn)矩利用率不高,低速時因定子電阻和逆變器死區(qū)效應(yīng)的存在而性能下降,穩(wěn)定性變差等。因此人們又研究出矢量控制變頻調(diào)速。
電壓空間矢量(SVPWM)控制方式
它是以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉(zhuǎn)磁場軌跡為目的,一次生成三相調(diào)制波形,以內(nèi)切多邊形逼近圓的方式進行控制的。
經(jīng)實踐使用后又有所改進,即引入頻率補償,能消除速度控制的誤差;通過反饋估算磁鏈幅值,消除低速時定子電阻的影響;將輸出電壓、電流閉環(huán),以提高動態(tài)的精度和穩(wěn)定度。但控制電路環(huán)節(jié)較多,且沒有引入轉(zhuǎn)矩的調(diào)節(jié),所以系統(tǒng)性能沒有得到根本改善。
矢量控制(VC)方式
矢量控制變頻調(diào)速的做法是將異步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換,等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉(zhuǎn)子磁場定向旋轉(zhuǎn)變換,等效成同步旋轉(zhuǎn)坐標系下的直流電流Im1、It1(Im1相當于直流電動機的勵磁電流;
It1相當于與轉(zhuǎn)矩成正比的電樞電流),然后模仿直流電動機的控制方法,求得直流電動機的控制量,經(jīng)過相應(yīng)的坐標反變換,實現(xiàn)對異步電動機的控制。
其實質(zhì)是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉(zhuǎn)子磁鏈,然后分解定子電流而獲得轉(zhuǎn)矩和磁場兩個分量,經(jīng)坐標變換,實現(xiàn)正交或解耦控制。
矢量控制方法的提出具有劃時代的意義。然而在實際應(yīng)用中,由于轉(zhuǎn)子磁鏈難以準確觀測,系統(tǒng)特性受電動機參數(shù)的影響較大,且在等效直流電動機控制過程中所用矢量旋轉(zhuǎn)變換較復(fù)雜,使得實際的控制效果難以達到理想分析的結(jié)果。
直接轉(zhuǎn)矩控制(DTC)方式
1985年,德國魯爾大學的DePenbrock教授首次提出了直接轉(zhuǎn)矩控制變頻技術(shù)。該技術(shù)在很大程度上解決了上述矢量控制的不足,并以新穎的控制思想、簡潔明了的系統(tǒng)結(jié)構(gòu)、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。
目前,該技術(shù)已成功地應(yīng)用在電力機車牽引的大功率交流傳動上。直接轉(zhuǎn)矩控制直接在定子坐標系下分析交流電動機的數(shù)學模型,控制電動機的磁鏈和轉(zhuǎn)矩。
它不需要將交流電動機等效為直流電動機,因而省去了矢量旋轉(zhuǎn)變換中的許多復(fù)雜計算;它不需要模仿直流電動機的控制,也不需要為解耦而簡化交流電動機的數(shù)學模型。
矩陣式交—交控制方式
VVVF變頻、矢量控制變頻、直接轉(zhuǎn)矩控制變頻都是交—直—交變頻中的一種。其共同缺點是輸入功率因數(shù)低,諧波電流大,直流電路需要大的儲能電容,再生能量又不能反饋回電網(wǎng),即不能進行四象限運行。
為此,矩陣式交—交變頻應(yīng)運而生。由于矩陣式交—交變頻省去了中間直流環(huán)節(jié),從而省去了體積大、價格貴的電解電容。
它能實現(xiàn)功率因數(shù)為l,輸入電流為正弦且能四象限運行,系統(tǒng)的功率密度大。該技術(shù)目前雖尚未成熟,但仍吸引著眾多的學者深入研究。其實質(zhì)不是間接的控制電流、磁鏈等量,而是把轉(zhuǎn)矩直接作為被控制量來實現(xiàn)的。
具體方法是:
控制定子磁鏈引入定子磁鏈觀測器,實現(xiàn)無速度傳感器方式;
自動識別(ID)依靠精確的電機數(shù)學模型,對電機參數(shù)自動識別;
算出實際值對應(yīng)定子阻抗、互感、磁飽和因素、慣量等算出實際的轉(zhuǎn)矩、定子磁鏈、轉(zhuǎn)子速度進行實時控制;
實現(xiàn)Band—Band控制按磁鏈和轉(zhuǎn)矩的Band—Band控制產(chǎn)生PWM信號,對逆變器開關(guān)狀態(tài)進行控制。
矩陣式交—交變頻具有快速的轉(zhuǎn)矩響應(yīng)(<2ms),很高的速度精度(±2%,無PG反饋),高轉(zhuǎn)矩精度(<+3%);同時還具有較高的起動轉(zhuǎn)矩及高轉(zhuǎn)矩精度,尤其在低速時(包括0速度時),可輸出150%~200%轉(zhuǎn)矩。
變頻器如何控制電機?兩者如何接線?
變頻器控制電機的接線較為簡單,跟接觸器的接線差不多,三根主電源進線,然后出線給電機,但是其中的設(shè)置就有說道了,控制變頻器的方式也多為不同。
首先我們來看一下變頻器的接線端子,雖然說品牌較多,接線方式也有不同,但是大部分的變頻器的接線端子也都差不太多。
一般分為正反轉(zhuǎn)的開關(guān)量輸入,用來控制電機多的啟動正反轉(zhuǎn)。反饋端子,用來反饋電機的運行狀態(tài),包括運行的頻率,轉(zhuǎn)速,故障狀態(tài)等等。速度給定控制,有些變頻器是用電位器,有的直接使用按鍵,都為不通。
通過物理接線方式來控制的,還有一種方式是走的通訊網(wǎng)絡(luò),很多的變頻器現(xiàn)在都支持通訊控制,可以通過這個通訊線就控制電機的啟動停止,正反轉(zhuǎn),調(diào)節(jié)速度等,同時反饋信息也通過通訊進行傳送。
-
電氣
+關(guān)注
關(guān)注
18文章
1168瀏覽量
53190 -
變頻器
+關(guān)注
關(guān)注
251文章
6573瀏覽量
145323 -
電機
+關(guān)注
關(guān)注
142文章
9050瀏覽量
145903
發(fā)布評論請先 登錄
相關(guān)推薦
評論