太赫茲波定義為0.1-10THz范圍內(nèi)的電磁波,處于微波與紅外之間,具有許多獨特的性質(zhì),比如穿透性、非電離輻射、吸水性、指紋頻譜等,在材料識別、安全檢查與無損檢測方面有諸多應用。
圖1太赫茲波在電磁譜中的位置
本文主要介紹了太赫茲成像技術的分類與特點,特別關注連續(xù)太赫茲波成像技術的實現(xiàn)方法及優(yōu)劣勢,包括連續(xù)波掃描成像技術、實時成像技術以及雷達成像技術,并展示虹科特有的連續(xù)太赫茲成像系統(tǒng),為無損檢測提供了極具優(yōu)勢的解決方案。
1.太赫茲成像技術的優(yōu)勢
太赫茲成像技術作為太赫茲研究中頗具前景的一個方向,得益于該輻射波段的獨特性質(zhì):光子能量低,不具有電離輻射;極易透過非極性和非金屬材料,包括陶瓷、塑料、木材等常見卻無法被紅外光透射的材料;頻段處在許多生物大分子振動和轉(zhuǎn)動能級,可根據(jù)太赫茲波的強吸收和諧振特性建立分子指紋特征譜鑒別物質(zhì)成分;水敏感性高,非常適合物質(zhì)含水量分析等。
圖2太赫茲成像技術的優(yōu)勢
除了可獲得比其他光源更多的信息外,太赫茲成像技術在性能上也十分優(yōu)越。太赫茲波段的高頻率對應于更短的波長,能夠達到比微波成像更高的空間分辨率。而在穿透成像方面,相比需要借助耦合劑接觸樣品的超聲成像,太赫茲成像屬于非接觸無損檢測,更易于實現(xiàn)自動化集成。與具有穿透能力的X射線成像相比,太赫茲成像沒有電離輻射,對人體以及生物樣品都沒有傷害,適應環(huán)境更為廣泛?;谝陨蟽?yōu)勢,太赫茲成像技術在安檢、生物檢測與工業(yè)無損檢測等方面具有極佳的應用前景。
圖3太赫茲成像技術的應用
2.脈沖太赫茲成像技術
太赫茲成像技術根據(jù)太赫茲源的種類可以分為連續(xù)太赫茲成像與脈沖太赫茲成像。
脈沖太赫茲波具有比較寬的頻帶,覆蓋GHz到十幾THz的范圍,有利于對樣品做太赫茲光譜的分析。目前脈沖太赫茲成像技術主要是基于太赫茲時域光譜儀(TDS),通過飛秒激光作用于光電導天線或者光整流晶體產(chǎn)生太赫茲脈沖,聚焦作用在樣品上,采集樣品單點位置的反射或者透射光譜。當我們施加一個掃描成像套件,將樣品進行二維平面的移動,選擇太赫茲光譜的某一信號特征進行數(shù)據(jù)處理即可得到樣品的太赫茲波圖像,能夠反饋樣品內(nèi)部的各種信息。
圖4典型的反射式太赫茲時域光譜儀系統(tǒng)
基于TDS的脈沖太赫茲成像方法能夠獲取較為全面的時域和頻域太赫茲信息,包括幅度和相位,經(jīng)過特殊系統(tǒng)設置還可以得到振幅信息,在目前的太赫茲成像市場中占據(jù)主流。然而缺點在于其需要移動樣品進行時間,對于大型樣品的掃描成像時間較長。另一點在于目前商業(yè)化的太赫茲時域光譜系統(tǒng)的輸出功率都不高,大多在百微瓦量級,在信噪比與穿透性方面需要不斷提高。
最新的突破在于德國的menlo systems公司開發(fā)的全光纖耦合太赫茲時域光譜系統(tǒng),在55mW的激光激發(fā)功率下測量到0.97±0.07 mW的太赫茲發(fā)射功率,這也是基于全光纖太赫茲產(chǎn)生的世界紀錄。
3.連續(xù)太赫茲成像技術
連續(xù)太赫茲在功率方面表現(xiàn)更為突出,基于量子級聯(lián)激光器原理的連續(xù)太赫茲源功率可高達幾十毫瓦,而基于肖特基二極管倍頻器的連續(xù)亞太赫茲源的功率高達上百毫瓦。因此在測量更厚的材料、實現(xiàn)更好的穿透效果方面,連續(xù)太赫茲波成像技術會更有優(yōu)勢。
基于連續(xù)太赫茲波的成像方法由于成像方式與產(chǎn)生方法的不同存在多個種類,每種成像方法各有優(yōu)劣,用戶可根據(jù)自己的具體應用需求來選擇合適的連續(xù)太赫茲成像系統(tǒng)。
(1)連續(xù)太赫茲波掃描成像系統(tǒng):
當擁有一個連續(xù)太赫茲源后,最簡單的成像系統(tǒng)組成為:一些光學元件將光束準直聚焦,一個位移臺承載并移動樣品,一個太赫茲探測器進行太赫茲信號的采集,再結合相關的圖像處理方法,即可組成一個連續(xù)太赫茲掃描成像系統(tǒng)。此類系統(tǒng)相較于TDS成像系統(tǒng),其太赫茲波的輸出功率通常會更高,在同等條件下可以穿透更厚的樣品。比如采用電子學的方法將微波頻段倍頻到太赫茲頻段,通常在1THz以下,輸出功率在幾十毫瓦量級,可靠性穩(wěn)定且設備體積緊湊,適合各類集成式系統(tǒng)應用,用戶可以根據(jù)項目需求自己搭建此類成像系統(tǒng)。
圖5虹科連續(xù)波掃描成像系統(tǒng)光路圖
當然,如果有完整組成的成像系統(tǒng)會使得項目應用更為簡便化。虹科提供基于此工作原理的完整掃描成像系統(tǒng),包括Teraschokky亞太赫茲源,提供75G/150G/300G/600G的輸出,最高350mW的功率輸出;熱釋電探測器,連接鎖相放大器使用,探測太赫茲源的功率數(shù)值;光學組件,用于太赫茲波的準直與聚焦,以及專業(yè)的成像軟件。
圖6掃描系統(tǒng)的Teraschokky亞太赫茲源與Terapyro太赫茲傳感器
如此簡單的系統(tǒng)構造能夠?qū)崿F(xiàn)最佳亞毫米的成像分辨率,并且能夠同時探測到樣品的反射與透射太赫茲信號,這對太赫茲信號的分析提供了更多可參考的數(shù)據(jù),對于太赫茲成像技術的延展研究也提供了更多可能性。
(2)太赫茲面陣成像:
在上文提到的成像系統(tǒng)包括TDS系統(tǒng)的缺點都在于其冗長的掃描時間,而太赫茲面陣成像技術的出現(xiàn)解決了這一難題。
面陣成像系統(tǒng)通常利用高功率的連續(xù)太赫茲源,準直后形成較為均勻的照明區(qū)域照射到樣品上,然后通過太赫茲相機進行面成像區(qū)域的采集,能夠?qū)崿F(xiàn)均勻照明區(qū)域內(nèi)的實時圖像呈現(xiàn)。此類系統(tǒng)的探測器多采用微測熱輻射計(Microbolometer),針對太赫茲波段做了優(yōu)化,且不需要制冷環(huán)境,是目前主流的太赫茲成像探測器。其像素大小有多種選擇,市面上最高有1280×1024的陣列,而幀頻通常在50或60Hz,能夠滿足常規(guī)的成像速度需要。
圖7太赫茲面陣成像的典型構造
太赫茲面陣成像技術雖然實現(xiàn)了實時成像,但是它目前仍存在單次成像面積有限的問題,受限于光源均勻后的功率,早期一般使用二氧化碳等氣體激光器充作太赫茲源。但是氣體激光器不僅體積龐大而且價格高昂,直到量子級聯(lián)激光器(QCL)的發(fā)明為太赫茲面陣成像技術的研究帶來了轉(zhuǎn)機,其在2~5T范圍具有mW級別的輸出功率,且設備結構緊湊,成為面陣成像技術的首選光源。
虹科提供的TeraEyes-HV系統(tǒng)就基于上述成像原理,其構成為:2~5T范圍的QCL太赫茲源,最高功率達7mW;成像模塊,包括自動對準模塊與光源均衡模塊,實現(xiàn)光斑的均勻照明,最大照明面積10×10cm2;搭配太赫茲鏡頭的太赫茲相機,進行實時圖像的采集,每分鐘采集50幀圖像。整個系統(tǒng)組件完整,調(diào)整樣品與相機的位置即可反射/透射式實時成像,最優(yōu)可實現(xiàn)250um的分辨率。
圖8虹科TeraEyes-HV實時成像太赫茲系統(tǒng)
使用QCL太赫茲源成像在均勻光斑的時候存在一個缺點,其輸出為相干光,并且太赫茲波長在毫米和亞毫米量級,經(jīng)過透鏡光闌等光學孔徑時,出射波束易發(fā)生衍射和干涉。經(jīng)過成像系統(tǒng)中多次光學元件反射后的光束輪廓,光斑周圍會存在明顯的干涉條紋,如圖9所示,在最終樣品成像效果中會存在明顯影響。
圖9 QCL源面陣成像受到干涉條紋影響
虹科提供的TeraEyes-HV實時成像系統(tǒng)采用了一種創(chuàng)新的成像設置,包括一個可編程的光束控制單元,能夠產(chǎn)生均勻而靈活的照明模式,從而解決了發(fā)射相干性帶來的限制。輻射通過光束控制單元傳播,通過振鏡對激光束進行快速控制,從而產(chǎn)生合適的照明模式。光束控制單元是完全可編程的,照明模式可以定制,以適應不同的樣品尺寸和應用。通過這種方法減少了衍射造成的成像干擾,進一步提高了信噪比。
圖10光斑快掃形成等效平行光斑,成像無干涉條紋的影響
因此,基于QCL源與太赫茲相機的連續(xù)太赫茲波成像系統(tǒng)能夠?qū)崟r成像,對于想要觀察動態(tài)變化的樣品的內(nèi)部情況等應用場景是最佳選擇方案。
(3)太赫茲雷達掃描成像:
太赫茲面陣成像技術雖然實現(xiàn)了實時動態(tài)的成像效果,但是其探測方式只能收集樣品反射/透射信號的強度信息,在信息采集的全面性存在局限。而基于連續(xù)太赫茲源,想要獲得更多的太赫茲信息(幅度、相位以及深度信息),連續(xù)波調(diào)頻(FMCW)太赫茲雷達是一個不錯的選擇。
圖11太赫茲雷達的成像構造圖
FMCW太赫茲雷達通常集成了發(fā)射和探測的功能,因此單體結構更為緊湊。太赫茲波的產(chǎn)生同樣是基于倍頻器等原理,其輸出頻率主要在亞太赫茲波段(<1THz),因此成像分辨率通常在mm級別。而探測是基于外差探測的混頻器原理,連續(xù)太赫茲波經(jīng)過線性/鋸齒波/三角波等調(diào)制,作用到樣品上并采集其反射信號,通過混頻器輸出中頻信號,而中頻信號反映了樣品的距離(深度信息)。
圖12線性FMCW雷達原理
目前,太赫茲波雷達的核心產(chǎn)生與探測主要有兩種方法:一種是基于III-V族半導體材料的肖特基二極管倍頻器,穩(wěn)定性高以及動態(tài)范圍、探測速率等成像表現(xiàn)更好,當然同樣價格更高;另一種則是基于硅基材料,能夠?qū)⒈额l器、混頻器等諸多功能電路集成在一張芯片上,因此成本與設備體積都會大大減少,而在穩(wěn)定性和成像性能表現(xiàn)上稍遜一籌。
圖13左為虹科150G太赫茲雷達,右為120G雷達
比如虹科的150G雷達就是基于GaAs材料,其動態(tài)范圍約100dB,探測速率高達7.6KHz,有潛力實現(xiàn)高速的線掃描成像;而基于硅基材料的120G雷達則只有10Hz的探測速率,動態(tài)范圍為30dB,但是成本優(yōu)勢十分明顯,內(nèi)置的光學元件以及搭配的位移平臺能夠?qū)崿F(xiàn)便攜操作的太赫茲成像檢測。
總而言之,太赫茲雷達成像的最大優(yōu)勢在于可以的得到樣品不同深度的二維圖像,實現(xiàn)層析成像,在圖像三維重建方面更有優(yōu)勢。并且核心材料制造有低價和高價的選擇,能夠滿足不同需求。
圖14 FMCW太赫茲雷達成像效果
4.太赫茲成像技術小結
太赫茲成像技術具有穿透性、非接觸式、非電離輻射的優(yōu)勢,在食品藥品包裝內(nèi)異物檢測、腐蝕檢測、材料內(nèi)部缺陷檢測等諸多工業(yè)應用場景具有廣泛的應用前景,當然實際使用時還需要適配具體的工業(yè)環(huán)境做一些集成開發(fā)工作。
根據(jù)太赫茲源的類型,太赫茲成像技術可以分為脈沖波成像與連續(xù)波成像,而連續(xù)波成像根據(jù)成像原理的不同又可分為連續(xù)波掃描成像、實時成像與雷達成像3種,各個成像系統(tǒng)的優(yōu)勢與局限可以簡單如下表所示:
圖15太赫茲成像技術的優(yōu)點與局限
虹科提供4種連續(xù)太赫茲波成像系統(tǒng),滿足用戶不同應用場景以及成像參數(shù)的需求,以最可靠的系統(tǒng)配置實現(xiàn)最優(yōu)的太赫茲成像效果。
參考文獻:
[1] Jean-Baptiste Perraud et al,Sensors. 2020, 20(14), 3993
[2] A. W. M. Lee et al, Opt. Lett. 2005, 30, 2563
[3]Yao-Chun Shen et al. Chinese Phys. B. 2020, 29, 078705
[4]曹丙花,李素珍等.光譜學與光譜分析. 2020, 40, 2686
[5]The Terahertz Users Group of the British Institute of Non-destructive Testing
審核編輯黃宇
-
無損檢測
+關注
關注
0文章
207瀏覽量
18530 -
太赫茲
+關注
關注
10文章
336瀏覽量
29190
發(fā)布評論請先 登錄
相關推薦
評論