0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AM:用于安全鋰金屬電池的熱響應(yīng)電解質(zhì)!

鋰電聯(lián)盟會(huì)長(zhǎng) ? 來(lái)源:鋰電聯(lián)盟會(huì)長(zhǎng) ? 2023-01-10 15:31 ? 次閱讀

一、背景介紹

鋰(Li)金屬電池(LMBs)被認(rèn)為是最有前途的下一代電池之一,因?yàn)殇嚱饘儇?fù)極具有最低的電勢(shì)(與標(biāo)準(zhǔn)氫電極相比為?3.040 V)和高理論比容量(3860 mAh g?1)。然而,與商用鋰離子電池相比,LMBs面臨著潛在的嚴(yán)重安全問(wèn)題,這嚴(yán)重阻礙了LMBs的實(shí)際應(yīng)用。因此,識(shí)別LMBs中的關(guān)鍵放熱反應(yīng)并制定適當(dāng)?shù)牟呗砸越档蜔岚踩L(fēng)險(xiǎn)是LMBs實(shí)際應(yīng)用的最重要任務(wù)之一。

不同的濫用情況,包括熱濫用、電子濫用、機(jī)械濫用,都會(huì)引發(fā)一系列強(qiáng)烈的放熱反應(yīng),從而產(chǎn)生可怕的熱量,導(dǎo)致電池存在熱安全風(fēng)險(xiǎn)。因此,找出高能LMBs內(nèi)部的關(guān)鍵放熱反應(yīng)對(duì)于降低熱安全風(fēng)險(xiǎn)至關(guān)重要。LMBs的熱安全風(fēng)險(xiǎn)涉及幾個(gè)放熱反應(yīng):(1)固體電解質(zhì)界面相(SEI)在高溫下強(qiáng)烈分解,成為不良熱源之一。(2)Li金屬在高溫下沒(méi)有SEI的保護(hù),具有很高的活性,與非水系電解質(zhì)發(fā)生連續(xù)反應(yīng),產(chǎn)生巨大的熱量。(3)鎳基層狀正極材料,特別是高鎳正極,在高溫下會(huì)發(fā)生相變,從而釋放氧氣。氧化氣體與電解質(zhì)/還原性負(fù)極(特別是鋰金屬負(fù)極)之間的化學(xué)串?dāng)_,產(chǎn)生巨大的熱量,最終導(dǎo)致電池工作時(shí)發(fā)生熱安全風(fēng)險(xiǎn)。(4)內(nèi)部短路是電池?zé)岚踩L(fēng)險(xiǎn)中的另一個(gè)主要熱源。由于隔膜失效,正極和負(fù)極直接接觸,產(chǎn)生巨大且無(wú)法控制的短路電流和大量的焦耳熱。電池局部溫度可在數(shù)秒內(nèi)升至100-120℃。更糟糕的是,由于LMBs與LIBs相比具有更高的能量密度,這些不良現(xiàn)象會(huì)加劇。

電解液設(shè)計(jì)是規(guī)避電池?zé)岚踩L(fēng)險(xiǎn)最便捷的策略之一。離子液體電解質(zhì)、全氟電解質(zhì)等多種電解質(zhì)具有高閃點(diǎn)和不可燃性,從而避免了其在高溫下的劇烈燃燒,有效地提高了LMBs的熱安全性。然而,這些電解質(zhì)在高溫下難以控制電極與電解質(zhì)之間的界面反應(yīng)和內(nèi)部短路問(wèn)題,最終導(dǎo)致LMBs熱失控。此外,工作電池的高溫?zé)岚踩耘c室溫電化學(xué)性能之間存在著內(nèi)在的沖突。因此,設(shè)計(jì)平衡高溫?zé)岚踩院褪覝匮h(huán)性能的電解質(zhì)對(duì)LMBs的實(shí)用價(jià)值具有重要意義。

二、正文部分 成果簡(jiǎn)介

近日,清華大學(xué)張強(qiáng)教授和東南大學(xué)程新兵教授,設(shè)計(jì)了一種具有熱響應(yīng)特性的新型電解質(zhì)體系,極大地提高了1.0 Ah LMBs的熱安全性。具體來(lái)說(shuō),碳酸乙烯酯(VC)與偶氮二異丁腈作為熱響應(yīng)溶劑被引入,以提高固體電解質(zhì)界面相(SEI)和電解質(zhì)的熱穩(wěn)定性。首先,在具有熱響應(yīng)性電解質(zhì)的SEI中形成了豐富的聚VC,與常規(guī)電解質(zhì)中廣泛獲得的無(wú)機(jī)組分相比,其對(duì)六氟磷酸鋰的熱穩(wěn)定性更高。這將熱安全的臨界溫度(明顯自熱的起始溫度)從71.5℃提高到137.4℃。當(dāng)電池溫度異常升高時(shí),殘留的VC溶劑會(huì)聚合成聚VC。聚(VC)不僅可以阻擋電極之間的直接接觸,還可以固定游離的液體溶劑,從而減少電極與電解質(zhì)之間的放熱反應(yīng)。因此,LMBs的內(nèi)部短路溫度和“燃點(diǎn)”溫度(熱失控的起始溫度)從126.3℃和100.3℃大幅提高到176.5℃和203.6℃。這項(xiàng)工作為在商業(yè)電解質(zhì)中添加各種熱響應(yīng)溶劑來(lái)實(shí)現(xiàn)熱穩(wěn)定的LMBs提供了新的見(jiàn)解。該研究以題目為“Thermoresponsive Electrolytes for Safe Lithium Metal Batteries”的論文發(fā)表在國(guó)際頂級(jí)期刊《Advanced Materials》上。

e6cc457c-901f-11ed-bfe3-dac502259ad0.png

圖文導(dǎo)讀

e814df3e-901f-11ed-bfe3-dac502259ad0.png

【圖1】電解質(zhì)特征。(a)熱響應(yīng)電解質(zhì)加熱前后的數(shù)碼照片。(b)常規(guī)電解質(zhì)、VC溶劑、聚(VC電解質(zhì))和聚(熱響應(yīng)電解質(zhì))的FTIR光譜和(c)1H NMR光譜。(d)各種電解質(zhì)的DSC和(e)LSV曲線。(f)以AIBN為引發(fā)劑的VC熱聚合示意圖。熱響應(yīng)電解質(zhì):1.0 M LiPF6-EC/DEC/VC(vol. 0.35: 0.35: 0.3)-2.2 μg L?1AIBN。常規(guī)電解質(zhì):1.0 M LiPF6-EC/DEC(體積比1:1)。VC電解質(zhì):1.0 M LiPF6-VC-2.2 μg L?1AIBN。聚(熱響應(yīng)電解質(zhì)):加熱后的熱響應(yīng)電解質(zhì)。聚(VC電解質(zhì)):加熱后的VC電解質(zhì)。

e85d29e2-901f-11ed-bfe3-dac502259ad0.png

【圖2】采用電弧法分析不同電解質(zhì)循環(huán)Li||NCM軟包電池的熱安全風(fēng)險(xiǎn)(a)Li||NCM軟包電池隨循環(huán)時(shí)間的溫度變化。(b)短路電流大、放熱大的電池內(nèi)部短路示意圖。(c)電壓隨電池溫度的變化。(d)不同電解質(zhì)Li||NCM軟包電池的ARC結(jié)果比較。

e87a5a44-901f-11ed-bfe3-dac502259ad0.png

【圖3】熱響應(yīng)電解質(zhì)的熱穩(wěn)定性。(a)不同電解質(zhì)中循環(huán)Li的XPS O 1s譜。(b)不同電解質(zhì)的熱重分析。(c)不同溫度加熱前后熱響應(yīng)電解質(zhì)的數(shù)碼照片。熱響應(yīng)電解質(zhì)在熱失控過(guò)程中延長(zhǎng)(d)T1和(e)Tisc的作用機(jī)制示意圖。

e8cb067e-901f-11ed-bfe3-dac502259ad0.png

【圖4】不同電解質(zhì)對(duì)電池組件熱行為的影響。在不同電解質(zhì)中(a)循環(huán)Li和(b)循環(huán)Li+循環(huán)NCM的DSC曲線。(c)VC溶劑中循環(huán)Li的DSC曲線。(d)熱響應(yīng)電解質(zhì)提高LMBs熱失控過(guò)程T2的作用機(jī)理示意圖。

總結(jié)和展望

本工作利用熱響應(yīng)電解質(zhì)提高了LMBs的熱安全性和循環(huán)性能。熱響應(yīng)電解質(zhì)在室溫下保持液態(tài),電壓窗寬(達(dá)到4.3 V),在含有大量聚VC的熱響應(yīng)電解質(zhì)中獲得SEI/CEI。與在常規(guī)電解質(zhì)中廣泛獲得的二碳酸乙烯鋰、碳酸乙烯鋰、Li2CO3和Li2O相比,它與LiPF6鹽的熱穩(wěn)定性更好。因此,熱響應(yīng)電解質(zhì)電池的T1從71.5 ℃增加到137.4℃。此外,在LMBs溫度異常升高時(shí),VC的自由基聚合過(guò)程被激活并加速。因此,在熱安全風(fēng)險(xiǎn)下形成固體凝膠,不僅能抑制液體溶劑(包括EC、DEC、VC)的自由移動(dòng),有效地修飾電極-電解質(zhì)界面,而且在PP-PE-PP隔膜已經(jīng)塌陷的情況下,還能作為一個(gè)具有良好熱穩(wěn)定性的附加屏障,防止正極和負(fù)極直接接觸。因此,電池的T2和Tisc可以從常規(guī)電解質(zhì)的100.3和126.3℃提高到熱響應(yīng)電解質(zhì)的203.6和176.5℃。這種電解質(zhì)設(shè)計(jì)同時(shí)提高了LMBs的T1、T2和Tisc。通過(guò)添加熱響應(yīng)單體和引發(fā)劑,可以提高各種商業(yè)電解質(zhì)的熱安全性。這項(xiàng)工作為實(shí)現(xiàn)熱安全的LMBs提供了新的思路。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    821

    瀏覽量

    20264
  • 鋰金屬電池
    +關(guān)注

    關(guān)注

    0

    文章

    140

    瀏覽量

    4419

原文標(biāo)題:清華大學(xué)張強(qiáng)最新AM:用于安全鋰金屬電池的熱響應(yīng)電解質(zhì)!

文章出處:【微信號(hào):Recycle-Li-Battery,微信公眾號(hào):鋰電聯(lián)盟會(huì)長(zhǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    清華大學(xué):自由空間對(duì)硫化物固態(tài)電解質(zhì)表面及內(nèi)部裂紋處沉積行為的影響

    清華新聞網(wǎng)2月7日電 硫化物固態(tài)電解質(zhì)Li5.5PS4.5Cl1.5具有鋰離子電導(dǎo)率高(≈10 mS/cm)、機(jī)械加工性能優(yōu)異、與金屬負(fù)極的化學(xué)兼容性良好等優(yōu)點(diǎn),是構(gòu)建具有高能量密度與高安全
    的頭像 發(fā)表于 02-14 14:49 ?96次閱讀
    清華大學(xué):自由空間對(duì)硫化物固態(tài)<b class='flag-5'>電解質(zhì)</b>表面及內(nèi)部裂紋處<b class='flag-5'>鋰</b>沉積行為的影響

    全固態(tài)金屬電池的最新研究

    成果簡(jiǎn)介 全固態(tài)金屬電池因其高安全性與能量密度而備受關(guān)注,但其實(shí)際應(yīng)用受限于的低可逆性、有限的正極載量以及對(duì)高溫高壓操作的需求,這主要源
    的頭像 發(fā)表于 01-23 10:52 ?372次閱讀
    全固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的最新研究

    研究論文::乙烯碳酸酯助力聚合物電解質(zhì)升級(jí),提升高電壓金屬電池性能

    1、 導(dǎo)讀 >> ? ? 該研究探討了乙烯碳酸酯(VC)添加劑在聚丙烯酸酯(PEA)基固態(tài)聚合物電解質(zhì)中的作用。結(jié)果表明,VC添加劑顯著提升了電解質(zhì)的鋰離子電導(dǎo)率和遷移數(shù),同時(shí)提高了金屬
    的頭像 發(fā)表于 01-15 10:49 ?306次閱讀
    研究論文::乙烯碳酸酯助力聚合物<b class='flag-5'>電解質(zhì)</b>升級(jí),提升高電壓<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>性能

    斯坦福大學(xué)鮑哲南/崔屹PNAS:高性能金屬電池用單氟電解質(zhì)

    背景介紹 金屬電池因其高理論比容量(3860 mAh g-1)和低還原電位(-3.04 V)而備受關(guān)注。然而,金屬
    的頭像 發(fā)表于 01-14 13:53 ?280次閱讀
    斯坦福大學(xué)鮑哲南/崔屹PNAS:高性能<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>用單氟<b class='flag-5'>電解質(zhì)</b>

    陳軍院士團(tuán)隊(duì)最新Angew,聚合物電解質(zhì)新突破

    研究背景 固態(tài)金屬電池(SSLMBs)因其高的能量密度和優(yōu)異的安全性能在能源存儲(chǔ)領(lǐng)域受到廣泛關(guān)注。然而,現(xiàn)有固態(tài)電解質(zhì)(SSEs)普遍存在
    的頭像 發(fā)表于 01-06 09:45 ?251次閱讀
    陳軍院士團(tuán)隊(duì)最新Angew,聚合物<b class='flag-5'>電解質(zhì)</b>新突破

    一種薄型層狀固態(tài)電解質(zhì)的設(shè)計(jì)策略

    研 究 背 景 用固態(tài)電解質(zhì)(SSE)代替有機(jī)電解液已被證明是克服高能量密度金屬電池安全性問(wèn)題
    的頭像 發(fā)表于 12-31 11:21 ?292次閱讀
    一種薄型層狀固態(tài)<b class='flag-5'>電解質(zhì)</b>的設(shè)計(jì)策略

    半互穿網(wǎng)絡(luò)電解質(zhì)用于高電壓金屬電池

    研究背景 基于高鎳正極的金屬電池的能量密度有望超過(guò)400 Wh kg-1,然而在高電壓充電時(shí),高鎳正極在高度去化狀態(tài)下,Ni4+的表面反應(yīng)性顯著增強(qiáng),這會(huì)催化正極與
    的頭像 發(fā)表于 12-23 09:38 ?432次閱讀
    半互穿網(wǎng)絡(luò)<b class='flag-5'>電解質(zhì)</b><b class='flag-5'>用于</b>高電壓<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    離子液體添加劑用于高壓無(wú)負(fù)極金屬電池

    ? ? ? ?研究背景 基于雙(氟磺?;啺?b class='flag-5'>鋰(LiFSI)的濃縮電解質(zhì)已被提出作為無(wú)負(fù)極金屬電池(AFLMB)的有效
    的頭像 發(fā)表于 12-10 11:00 ?652次閱讀
    離子液體添加劑<b class='flag-5'>用于</b>高壓無(wú)負(fù)極<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    通過(guò)電荷分離型共價(jià)有機(jī)框架實(shí)現(xiàn)對(duì)金屬電池固態(tài)電解質(zhì)界面的精準(zhǔn)調(diào)控

    (-3.04 V vs SHE),被認(rèn)為是次世代電池的最優(yōu)選擇。然而,金屬負(fù)極的實(shí)際應(yīng)用面臨諸多挑戰(zhàn),其中最關(guān)鍵的問(wèn)題是枝晶的生長(zhǎng)和副反應(yīng)的發(fā)生。這些問(wèn)題不僅會(huì)導(dǎo)致
    的頭像 發(fā)表于 11-27 10:02 ?504次閱讀
    通過(guò)電荷分離型共價(jià)有機(jī)框架實(shí)現(xiàn)對(duì)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>固態(tài)<b class='flag-5'>電解質(zhì)</b>界面的精準(zhǔn)調(diào)控

    全固態(tài)金屬電池陽(yáng)極夾層設(shè)計(jì)

    全固態(tài)金屬電池(ASSLB)由于其高能量密度和高安全性而引起了人們的強(qiáng)烈興趣,金屬被認(rèn)為是一
    的頭像 發(fā)表于 10-31 13:45 ?373次閱讀
    全固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的<b class='flag-5'>鋰</b>陽(yáng)極夾層設(shè)計(jì)

    固態(tài)電池中復(fù)合陽(yáng)極上固體電解質(zhì)界面的調(diào)控

    采用固體聚合物電解質(zhì)(SPE)的固態(tài)金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲(chǔ)能領(lǐng)域具有很大的應(yīng)用前景。
    的頭像 發(fā)表于 10-29 16:53 ?666次閱讀
    固態(tài)<b class='flag-5'>電池</b>中復(fù)合<b class='flag-5'>鋰</b>陽(yáng)極上固體<b class='flag-5'>電解質(zhì)</b>界面的調(diào)控

    無(wú)極電容器有電解質(zhì)嗎,無(wú)極電容器電解質(zhì)怎么測(cè)

    無(wú)極電容器通常存在電解質(zhì)。電解質(zhì)在無(wú)極電容器中起著重要作用,它可以增加電容器的電容量和穩(wěn)定性。然而,電解質(zhì)也可能帶來(lái)一些問(wèn)題,如漏電和壽命問(wèn)題。
    的頭像 發(fā)表于 10-01 16:45 ?516次閱讀

    鈮酸調(diào)控固態(tài)電解質(zhì)電場(chǎng)結(jié)構(gòu)促進(jìn)鋰離子高效傳輸!

    聚合物基固態(tài)電解質(zhì)得益于其易加工性,最有希望應(yīng)用于下一代固態(tài)金屬電池。
    的頭像 發(fā)表于 05-09 10:37 ?1020次閱讀
    鈮酸<b class='flag-5'>鋰</b>調(diào)控固態(tài)<b class='flag-5'>電解質(zhì)</b>電場(chǎng)結(jié)構(gòu)促進(jìn)鋰離子高效傳輸!

    最新Nature Energy開(kāi)發(fā)新型稀釋劑助推金屬電池實(shí)用化!

    眾所知周,通過(guò)調(diào)控電解液來(lái)穩(wěn)定固體電解質(zhì)間相(SEI),對(duì)于延長(zhǎng)金屬電池循環(huán)壽命至關(guān)重要。
    的頭像 發(fā)表于 05-07 09:10 ?1082次閱讀
    最新Nature Energy開(kāi)發(fā)新型稀釋劑助推<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>實(shí)用化!

    固態(tài)金屬電池的外部壓力研究

    目前,使用易燃液體電解質(zhì)的商用鋰離子電池無(wú)法滿足日益增長(zhǎng)的高能量密度和安全性要求。用無(wú)機(jī)固態(tài)電解質(zhì)(SSE)取代傳統(tǒng)的液體電解質(zhì)有望在很大程
    的頭像 發(fā)表于 04-26 09:02 ?1257次閱讀
    固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的外部壓力研究