0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

提高有機太陽能電池電導(dǎo)率的突破

張華 ? 2023-01-05 09:43 ? 次閱讀

緩慢發(fā)展的有機太陽能電池行業(yè)終于在尋求優(yōu)化能量轉(zhuǎn)換方面取得了突破,并且由于實驗過程中的意外發(fā)現(xiàn),這一突破來自于用富勒烯分子層——通常稱為“巴基球”來誘導(dǎo)電子的過程。 ” 密歇根大學(xué)的科學(xué)家在試驗有機太陽能電池結(jié)構(gòu)時發(fā)現(xiàn)了這一發(fā)現(xiàn)。研究人員在有機電池的能量產(chǎn)生層頂部添加了兩層富勒烯分子,光子在該層撞擊太陽能電池以驅(qū)逐電子。

他們發(fā)現(xiàn),電子在富勒烯層中移動得更自由,走得更遠(yuǎn),并且在電子無法逃逸的地方也產(chǎn)生了“能量井”(技術(shù)上稱為勢阱)。結(jié)果是這些電子 - 當(dāng)與富勒烯分子層一起被誘導(dǎo)時 - 可以移動長達幾厘米(與納米相比),這使它們能夠產(chǎn)生更大的電流。

為什么這一突破很重要

眾所周知,有機細(xì)胞的電子傳導(dǎo)性較弱,因為它們在單個分子之間的鍵合松散。電子在分子之間沒有有效的管道,而是經(jīng)常被困住,最多只能移動幾百納米。在有機太陽能電池中,這種電子俘獲是限制這些電子行進距離的主要障礙。如果它們可以在沒有阻力的情況下自由穿過結(jié)構(gòu),它們可以走得更遠(yuǎn)。這對所有太陽能電池都是一樣的,但有機網(wǎng)絡(luò)對這些電子的穿過提出了更大的挑戰(zhàn)。因為電子在被俘獲之前行進的距離不夠遠(yuǎn)(它們無法移動),所以它們無法參與電路。這種電子參與的阻礙降低了電池的電導(dǎo)率,反過來,轉(zhuǎn)換效率降低,因為更少的自由流動電子可以循環(huán)。因此,由聚合物等非金屬半導(dǎo)體組成的有機太陽能電池的效率最高只能達到 13.1%。這種效率水平無法與提供 26.6% 功率效率并在當(dāng)今太陽能電池板中廣泛使用的硅基無機太陽能電池競爭。

然而,有機太陽能電池的幾個積極特性突出表明需要進一步研究以提高其效率。例如,除了由于更簡單的聚合物加工技術(shù)而可能降低成本外,有機太陽能電池還更薄、更靈活和透明。這些特性對于有效地將陽光轉(zhuǎn)化為電能至關(guān)重要。此外,在旨在建造凈零能耗建筑 (NZEB) 或改造現(xiàn)有結(jié)構(gòu)以提高能源效率的項目中,公司可以將有機太陽能電池集成到結(jié)構(gòu)本身中,例如在屋頂和墻壁上,較重、不靈活的硅-基于無機太陽能電池是不實用或不可行的。這些有機太陽能電池的好處還在于它們具有多種顏色和配置,

突破審查

很明顯,需要找到使有機太陽能電池發(fā)揮其全部潛力的方法,而最近的這一突破可能就是這樣做的。根據(jù)密歇根大學(xué)題為“半導(dǎo)體突破可能成為有機太陽能電池的游戲規(guī)則改變者”的文章,其研究人員從有機電池的發(fā)電層開始,光子在該層撞擊太陽能電池以驅(qū)逐電子?!笆褂靡环N稱為真空熱蒸發(fā)的常用技術(shù),它們在 C 60富勒烯薄膜中分層- 每個富勒烯由 60 個碳原子組成?!?他們發(fā)現(xiàn)電子在富勒烯層中自由移動,而不是被困在有機分子之間的松散鍵中。

有趣的是,眾所周知,富勒烯是出色的受體分子,因為它們具有可變的雜交狀態(tài)、再雜交能力和彎曲的拓?fù)浣Y(jié)構(gòu)。(然而,值得注意的是,自從發(fā)現(xiàn)富勒烯在太陽能電池中的用途以來,出現(xiàn)了一種新的高效類別,現(xiàn)在稱為非富勒烯受體 (NFA)有機太陽能電池,它具有與富勒烯相似的電子接受特性,但顯然是非富勒烯分子。)富勒烯也是電子受限材料,它們包含勢(即量子)阱。這意味著一旦電子進入富勒烯分子的勢阱,就很難去除電子。使用將富勒烯層夾在中間的電子阻擋層以防止任何電子離開并與空穴重新結(jié)合會產(chǎn)生額外的障礙。

電子影響勢阱外領(lǐng)域的唯一方式是通過電子隧穿。然而,當(dāng)你并排放置量子阱時,也就是說,富勒烯分子可以在一層中彼此相鄰放置,它們可以形成所謂的“超晶格”。如果量子阱之間的距離小于電子的隧道波函數(shù)的范圍,則電子波長可以重疊并在勢阱之間建立連接,從而使電子(和電流)能夠流動。因此,通過將電子捕獲在富勒烯層內(nèi),分子與分子之間的勢阱非常接近,從而使電子能夠暢通無阻地流動而沒有糾纏的風(fēng)險。

同樣,因為它們可以自由移動并且不能與能量產(chǎn)生層中的空穴重新結(jié)合,所以電子可以移動得更遠(yuǎn)——可達幾厘米,而不僅僅是納米——這使它們能夠產(chǎn)生更大的電流。如前所述,這是現(xiàn)在可能的更大電流的結(jié)果,不是因為單個電子攜帶更多能量,而是因為有更多電流(即電荷)載流子在電路周圍流動。最終,有機太陽能電池中比電流(和效率)的增加取決于添加富勒烯之前與之后相比有多少電子在系統(tǒng)周圍流動。

啟示

密歇根大學(xué)的研究人員承認(rèn),這一發(fā)現(xiàn)只是一個開始,還有更多的工作要做,以改進太陽能電池的設(shè)計,特別是研究有機材料中還有什么可以成為良好的電子導(dǎo)體。密歇根大學(xué)工程學(xué)教授 Stephen Forrest 預(yù)計,可能需要長達 10 年的時間才能出現(xiàn)主要的有機太陽能電池解決方案。

不過,這一富勒烯發(fā)現(xiàn)為有機材料鋪平了道路,可用于制造透明太陽能電池,這種太陽能電池在較長距離內(nèi)非常有效。例如,太陽能電池制造商可以將太陽能電池的導(dǎo)電電極收縮成看不見的網(wǎng)格,并結(jié)合有機太陽能電池的其他特性,太陽能電池可以在任何表面上形成疊片,而不會受到阻礙。由于與有機太陽能電池相關(guān)的聚合物加工成本較低,這些解決方案對于廣泛的應(yīng)用來說可能相當(dāng)便宜。也許這一涉及有機太陽能電池的發(fā)現(xiàn)的最大突破是,更多的發(fā)現(xiàn)導(dǎo)致更多的進步即將出現(xiàn)。

審核編輯黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 太陽能
    +關(guān)注

    關(guān)注

    37

    文章

    3413

    瀏覽量

    114279
  • 電池
    +關(guān)注

    關(guān)注

    84

    文章

    10582

    瀏覽量

    129825
收藏 人收藏

    評論

    相關(guān)推薦

    邁向27.51%效率,非晶/微晶材料在HBC太陽能電池中的應(yīng)用

    太陽能光伏行業(yè)正尋求通過創(chuàng)新制造工藝、新型材料、太陽能電池設(shè)計和模塊配置來提高模塊性能。SHJ太陽能電池具高PCE、簡化制造工藝和低制造成溫等優(yōu)點,但存在Jsc較低和原材料成本較高等局
    的頭像 發(fā)表于 11-14 01:07 ?550次閱讀
    邁向27.51%效率,非晶/微晶材料在HBC<b class='flag-5'>太陽能電池</b>中的應(yīng)用

    太陽能電池板是半導(dǎo)體還是超導(dǎo)體

    太陽能電池板是利用半導(dǎo)體材料制成的,它們能夠?qū)?b class='flag-5'>太陽光能轉(zhuǎn)化為電能。太陽能電池板的核心是太陽能電池,而太陽能電池的工作原理基于半導(dǎo)體的光電效應(yīng)
    的頭像 發(fā)表于 09-21 14:15 ?939次閱讀

    抗反射涂層對太陽能電池性能的影響

    光伏發(fā)電是一種將太陽能轉(zhuǎn)化為電能的效應(yīng)。無抗反射涂層的太陽能電池表面的反射非常高,超過30%的入射光會從硅表面反射,因此太陽能電池性能面臨的主要挑戰(zhàn)是反射損耗。光捕獲、表面紋理和抗反
    的頭像 發(fā)表于 09-05 08:07 ?704次閱讀
    抗反射涂層對<b class='flag-5'>太陽能電池</b>性能的影響

    太陽能應(yīng)用選擇合適的太陽能電池充電器

    電子發(fā)燒友網(wǎng)站提供《為太陽能應(yīng)用選擇合適的太陽能電池充電器.pdf》資料免費下載
    發(fā)表于 09-04 09:54 ?0次下載
    為<b class='flag-5'>太陽能</b>應(yīng)用選擇合適的<b class='flag-5'>太陽能電池</b>充電器

    摻雜分布對太陽能電池薄膜方阻和接觸電阻的影響

    太陽能電池的研究中,提高電池的光電轉(zhuǎn)換效率是至關(guān)重要的目標(biāo)。四點探針法和TLM傳輸法兩種測試方法在研究晶硅太陽能電池的薄膜方阻均一性和摻雜前后接觸電阻變化起到了重要作用。「美
    的頭像 發(fā)表于 08-30 13:07 ?467次閱讀
    摻雜分布對<b class='flag-5'>太陽能電池</b>薄膜方阻和接觸電阻的影響

    利用太陽光模擬器進行鈣鈦礦太陽能電池的I-V測試

    (Voc)、短路電流(Isc)、填充因子(FF)和最大功率點(Pmax)等重要參數(shù)。這些參數(shù)對于理解太陽能電池的工作機制、優(yōu)化電池結(jié)構(gòu)和提高光電轉(zhuǎn)換效率具有重要意義。
    的頭像 發(fā)表于 07-15 11:25 ?797次閱讀
    利用<b class='flag-5'>太陽</b>光模擬器進行鈣鈦礦<b class='flag-5'>太陽能電池</b>的I-V測試

    太陽能熱水器水位溫度傳感器原理

    太陽能熱水器水位溫度傳感器是一種用于監(jiān)測太陽能熱水器內(nèi)水位和水溫的設(shè)備。它通過測量太陽能熱水器內(nèi)水的電導(dǎo)率或壓力變化來確定水位和水溫。本文將詳細(xì)介紹
    的頭像 發(fā)表于 06-19 10:31 ?4590次閱讀

    佳能高性能涂層技術(shù)突破,引領(lǐng)太陽能電池革命

    在今日的科技浪潮中,太陽能電池以其綠色、清潔、可再生的特性,越來越受到全球的關(guān)注。6月18日,佳能公司官網(wǎng)傳來令人振奮的消息,其研發(fā)的高性能涂層技術(shù)取得了重大突破,這一技術(shù)能夠顯著提升過氧化物太陽能電池的耐用性和量產(chǎn)穩(wěn)定性,為
    的頭像 發(fā)表于 06-18 15:33 ?540次閱讀

    淺談太陽能電池的類型

    大多數(shù)家用屋頂太陽能電池板都是由高純度單晶硅制成的。該類電池近年來已實現(xiàn)超過26%的效率和30多年的使用壽命。[4]目前家用太陽能電池板的效率約為22%。
    發(fā)表于 04-17 10:22 ?627次閱讀
    淺談<b class='flag-5'>太陽能電池</b>的類型

    太陽能電池板如何存儲電能?

    太陽能電池板本身并不直接存儲電能,而是將太陽能轉(zhuǎn)換為電能,然后這些電能可以通過不同的方式被存儲起來以備后用。
    的頭像 發(fā)表于 04-16 16:00 ?5270次閱讀

    太陽能電池板與太陽能電池有什么區(qū)別

    太陽能電池板和太陽能電池太陽能光伏系統(tǒng)中的兩個關(guān)鍵組成部分,它們在概念、結(jié)構(gòu)和應(yīng)用方面存在著明顯的區(qū)別。
    的頭像 發(fā)表于 04-16 15:55 ?2030次閱讀

    太陽能電池板有輻射嗎

    太陽能電池板作為一種將太陽能轉(zhuǎn)換為電能的裝置,其安全性一直是人們關(guān)注的焦點。關(guān)于太陽能電池板是否會有輻射,這是一個需要科學(xué)解釋的問題。
    的頭像 發(fā)表于 04-16 15:52 ?2228次閱讀

    磷摻雜時間對晶體硅太陽能電池反射、接觸電阻、方阻的影響

    電池性能的影響,測量接觸電阻可以判斷電池片和金屬柵線的接觸質(zhì)量,這些測試對提高太陽能電池性能起著主導(dǎo)作用?!该?b class='flag-5'>能光伏」針對用戶的測試需求,
    的頭像 發(fā)表于 03-29 08:32 ?1558次閱讀
    磷摻雜時間對晶體硅<b class='flag-5'>太陽能電池</b>反射<b class='flag-5'>率</b>、接觸電阻、方阻的影響

    減少鈣鈦礦/硅疊層太陽能電池中的反射損耗研究

    鈦礦/硅串聯(lián)太陽能的理論轉(zhuǎn)化效率可達43%,且具有突破單結(jié)太陽能電池Shockley-Queisser極限的潛力。然而,內(nèi)部界面的反射損耗對串聯(lián)電池的整體效率起著
    的頭像 發(fā)表于 03-23 08:32 ?2062次閱讀
    減少鈣鈦礦/硅疊層<b class='flag-5'>太陽能電池</b>中的反射損耗研究

    太陽能電池工作原理 太陽能電池與鋰電池的區(qū)別

    太陽能電池工作原理 太陽能電池與鋰電池的區(qū)別? 太陽能電池是一種將太陽能直接轉(zhuǎn)化為電能的裝置。它可以利用光的能量來產(chǎn)生電流,進而為電子設(shè)備供
    的頭像 發(fā)表于 01-10 16:50 ?2285次閱讀