0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何通過最小化熱回路來優(yōu)化開關電源布局?

analog_devices ? 來源:未知 ? 2022-11-29 18:45 ? 次閱讀

能否優(yōu)化開關電源的效率?


當然可以,最小化熱回路PCB ESR和ESL是優(yōu)化效率的重要方法。

對于功率轉換器,寄生參數(shù)最小的熱回路PCB布局能夠改善能效比,降低電壓振鈴,并減少電磁干擾(EMI)。本文討論如何通過最小化PCB的等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)來優(yōu)化熱回路布局設計。本文研究并比較了影響因素,包括解耦電容位置、功率FET尺寸和位置以及過孔布置。通過實驗驗證了分析結果,并總結了最小化PCB ESR和ESL的有效方法。


熱回路和PCB布局寄生參數(shù)


開關模式功率轉換器的熱回路是指由高頻(HF)電容和相鄰功率FET形成的臨界高頻交流電流回路。它是功率級PCB布局的最關鍵部分,因為它包含高dv/dt和di/dt噪聲成分。設計不佳的熱回路布局會產(chǎn)生較大的PCB寄生參數(shù),包括ESL、ESR和等效并聯(lián)電容(EPC),這些參數(shù)對功率轉換器的效率、開關性能和EMI性能有重大影響。


圖1顯示了同步降壓DC-DC轉換器原理圖。熱回路由MOSFET M1和M2以及解耦電容CIN形成。M1和M2的開關動作會產(chǎn)生高頻di/dt和dv/dt噪聲。CIN提供了一個低阻抗路徑來旁路高頻噪聲成分。然而,器件封裝內和熱回路PCB走線上存在寄生阻抗(ESR、ESL)。高di/dt噪聲通過ESL會引起高頻振鈴,進而導致EMI。ESL中存儲的能量在ESR上耗散,導致額外的功率損耗。因此,應盡量減小熱回路PCB的ESR和ESL,以減少高頻振鈴并提高效率。

準確提取熱回路的ESR和ESL,有助于預測開關性能并改進熱回路設計。器件的封裝和PCB走線均會影響回路的總寄生參數(shù)。本文主要關注PCB布局設計。有一些工具可幫助用戶提取PCB寄生參數(shù),例如Ansys Q3D、FastHenry/FastCap、StarRC等。Ansys Q3D之類的商用工具可提供準確的仿真,但通常價格昂貴。FastHenry/FastCap是一款基于部分元件等效電路(PEEC)數(shù)值建模的免費工具,可以通過編程提供靈活的仿真來探索不同的版圖設計,但需要額外的編程。FastHenry/FastCap寄生參數(shù)提取的有效性和準確性已經(jīng)過驗證,并與Ansys Q3D進行了比較,結果一致。在本文中,F(xiàn)astHenry用作提取PCB ESR和ESL的經(jīng)濟高效的工具。


圖1.帶熱回路ESR和ESL的降壓轉換器


熱回路PCB的ESR和ESL與解耦電容位置的關系


本部分基于ADI公司的LTM4638μModule穩(wěn)壓器演示板DC2665A-B來研究CIN位置的影響。LTM4638是一款集成式20 VIN、15 A降壓型轉換器模塊,采用小型6.25 mm × 6.25 mm × 5.02 mm BGA封裝。它具有高功率密度、快速瞬態(tài)響應和高效率特性。模塊內部集成了一個小的高頻陶瓷CIN,不過受限于模塊封裝尺寸,這還不夠。圖2至圖4展示了演示板上的三種不同熱回路,這些熱回路使用了額外的外部CIN。第一種是垂直熱回路1(圖2),其中CIN1放置在μModule穩(wěn)壓器下方的底層。μModule VIN和GND BGA引腳通過過孔直接連接到CIN1。這些連接提供了演示板上的最短熱回路路徑。第二種熱回路是垂直熱回路2(圖3),其中CIN2仍放置在底層,但移至μModule穩(wěn)壓器的側面區(qū)域。其結果是,與垂直熱回路1相比,該熱回路添加了額外的PCB走線,預計ESL和ESR更大。第三種熱回路選項是水平熱回路(圖4),其中CIN3放置在靠近μModule穩(wěn)壓器的頂層。μModule VIN和GND引腳通過頂層銅連接到CIN3,而不經(jīng)過過孔。然而,頂層的VIN銅寬度受其他引腳排列的限制,導致回路阻抗高于垂直熱回路1。表1比較了FastHenry提取的熱回路 PCB ESR和ESL。正如預期的那樣,垂直熱回路1的PCB ESR和ESL最低。

圖2.垂直熱回路1:(a)俯視圖和(b)側視圖

圖3.垂直熱回路2:(a)俯視圖和(b)側視圖

圖4.水平熱回路:(a)俯視圖和(b)側視圖

表1.使用FastHenry提取的不同熱回路的PCB ESR和ESL


為了通過實驗驗證不同熱回路的ESR和ESL,我們測試了12V轉1V CCM運行時演示板的效率和VIN交流紋波。理論上,ESR越低,則效率越高,而ESL越小,則VSW振鈴頻率越高,VIN紋波幅度越低。圖5a顯示了實測效率。垂直熱回路1的效率最高,因為其ESR最低。水平熱回路和垂直熱回路1之間的損耗差異也是基于提取的ESR計算的,這與圖5b所示的測試結果一致。圖5c中的VINHF紋波波形是在CIN上測試的。水平熱回路具有更高的VIN紋波幅度和更低的振鈴頻率,因此驗證了其回路ESL高于垂直熱回路1。另外,由于回路ESR更高,因此水平熱回路的VIN紋波衰減速度快于垂直熱回路1。此外,較低的VIN紋波降低了EMI,因而可以使用較小的EMI濾波器


圖5.演示板測試結果:(a)效率,(b)水平回路與垂直回路1之間的損耗差異,(c)15A輸出時M1導通期間的VIN紋波

表2.對于不同器件形狀和位置,使用FastHenry提取的熱回路PCB ESR和ESL


熱回路PCB ESR和ESL與MOSFET尺寸和位置的關系


對于分立式設計,功率FET的布置和封裝尺寸對熱回路ESR和ESL也有重大影響。本部分對使用功率FET M1和M2以及解耦電容CIN的典型半橋熱回路進行了建模和研究。圖6比較了常見功率FET封裝尺寸和放置位置。表2顯示了每種情況下提取的ESR和ESL。

情況(a)至(c)展示了三種常見功率FET布置,其中采用5 mm × 6 mm MOSFET。熱回路的物理長度決定了寄生阻抗。與情況(a)相比,情況(b)中的90°形狀布置和情況(c)中的180°形狀布置的回路路徑更短,導致ESR降低60%,ESL降低80%。由于90°形狀布置顯示出了優(yōu)勢,我們基于情況(b)研究了更多情況,以進一步降低回路ESR和ESL。情況(d)將一個5 mm × 6 mm MOSFET替換為兩個并聯(lián)的3.3mm × 3.3mm MOSFET。由于MOSFET尺寸更小,回路長度進一步縮短,導致回路阻抗降低7%。情況(e)將一個接地層放置在熱回路層下方,與情況(d)相比,熱回路ESR和ESL進一步降低2%。原因是接地層上產(chǎn)生了渦流,其感應出相反的磁場,相當于降低了回路阻抗。情況(f)構建了另一個熱回路層作為底層。如果將兩個并聯(lián)MOSFET對稱布置在頂層和底層,并通過過孔連接,則由于并聯(lián)阻抗,熱回路PCB ESR和ESL的降低更加明顯。因此,在頂層和底層上以對稱90°形狀或180°形狀布置較小尺寸的器件,可以獲得最低的PCB ESR和ESL。


為了通過實驗驗證MOSFET布置的影響,我們使用了ADI公司的高效率4開關同步降壓-升壓控制器演示板LT8390/DC2825A和LT8392/DC2626A。如圖 7a和圖7b所示,DC2825A采用直線MOSFET布置,DC2626A采用90°形狀的MOSFET布置。為了進行公平比較,兩個演示板配置了相同的MOSFET和解耦電容,并在36V轉12V/10A、300 kHz降壓操作下進行了測試。圖7c顯示了M1導通時刻測得的VIN交流紋波。采用90°形狀的MOSFET布置時,VIN紋波的幅度更低,諧振頻率更高,這就驗證了熱回路路徑較短導致PCB ESL更小。相反,直線MOSFET布置的熱回路更長,ESL更高,導致VIN紋波幅度要高得多,并且諧振頻率更低。根據(jù)Cho和Szokusha研究的EMI測試結果,較高的輸入電壓紋波還會導致EMI輻射更嚴重。


圖6.熱回路PCB模型:(a)5mm×6mm MOSFET,直線布置;(b)5mm×6mm MOSFET,以90°形狀布置;(c)5mm×6mm MOSFET,以180°形狀布置;(d)兩個并聯(lián)的3.3mm×3.3mm MOSFET,以90°形狀布置;(e)兩個并聯(lián)的3.3mm×3.3mm MOSFET,以90°形狀布置,帶有接地層;(f)對稱的3.3mm×3.3mm MOSFET,位于頂層和底層,以90°形狀布置。

圖7.(a) LT8390/DC2825A熱回路,MOSFET以直線布置;(b) LT8392/DC2626A熱回路,MOSFET以90°形狀布置;(c) M1導通時的VIN紋波波形。

圖8.熱回路PCB模型,(a) 5個GND過孔靠近CIN和M2布置;(b) 14個GND過孔布置在CIN和M2之間;(c) 基于(b),GND上再布置6個過孔;(d) 基于(c),GND區(qū)域上再布置9個過孔。


熱回路PCB的ESR和ESL與過孔布置的關系


熱回路中的過孔布局對回路ESR和ESL也有重要影響。圖8對使用兩層PCB結構和直線布置功率FET的熱回路進行了建模。FET放置在頂層,第二層是接地層。CINGND焊盤和M2源極焊盤之間的寄生阻抗Z2是熱回路的一部分,作為示例進行研究。Z2是從FastHenry提取的。表3總結并比較了不同過孔布置的仿真ESR2和ESL2。


通常,添加更多過孔會降低PCB寄生阻抗。然而,ESR2和ESL2的降低程度與過孔數(shù)量并不是線性比例關系??拷_焊盤的過孔,所導致的PCB ESR和ESL的降低最明顯。因此,對于熱回路布局設計,必須將幾個關鍵過孔布置在靠近CIN和MOSFET焊盤的位置,以使高頻回路阻抗最小。
表3.使用不同過孔布置時提取的熱回路PCB ESR2和ESL2

結論


減小熱回路的寄生參數(shù)有助于提高電源效率,降低電壓振鈴,并減少EMI。為了盡量減小PCB寄生參數(shù),我們研究并比較了使用不同解耦電容位置、MOSFET尺寸和位置以及過孔布置的熱回路布局設計。更短的熱回路路徑、更小尺寸的MOSFET、對稱的90°形狀和180°形狀MOSFET布置、靠近關鍵元器件的過孔,均有助于實現(xiàn)最低的熱回路PCB ESR和ESL。
查看往期內容↓↓↓


原文標題:如何通過最小化熱回路來優(yōu)化開關電源布局?

文章出處:【微信公眾號:亞德諾半導體】歡迎添加關注!文章轉載請注明出處。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 亞德諾
    +關注

    關注

    6

    文章

    4680

    瀏覽量

    16103

原文標題:如何通過最小化熱回路來優(yōu)化開關電源布局?

文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    如何做好非隔離式開關電源的PCB布局

    大電流保持相同的方向,使影響最小化。 圖 1a 和 1c 分別是六層和四層開關電源 PCB 的不良層結構。這些結構將小信號層夾在大電流功率層和地層之間,因此增加了大電流/電壓功率層與模擬小信號層之間耦合
    發(fā)表于 03-13 14:13

    開關電源的效率優(yōu)化方法 如何定制開關電源解決方案

    開關電源效率。高品質的變壓器能夠有效地減少鐵損耗和銅損耗,不僅能提高功率轉換效率,還能有效延長開關電源的使用壽命。 優(yōu)化開關元件的選擇 : 開關元件對于
    的頭像 發(fā)表于 11-29 16:56 ?3037次閱讀

    如何通過等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)優(yōu)化回路布局設計

    對于功率轉換器,寄生參數(shù)最小回路PCB布局能夠改善能效比,降低電壓振鈴,并減少電磁干擾(EMI)。本文討論如何通過
    的頭像 發(fā)表于 11-25 10:36 ?1188次閱讀

    開關電源的尺寸和功率選擇

    開關電源的基本原理 開關電源通過高頻開關元件(如MOSFET)快速開關,將輸入電壓轉換為所需的輸出電壓。這個過程涉及到能量的存儲和釋放,通常
    的頭像 發(fā)表于 11-20 10:40 ?883次閱讀

    開關電源的控制技術包含哪些種類

    、基本控制技術 手動控制 通過手動操作開關或旋鈕控制開關電源開關狀態(tài)和輸出電壓等參數(shù)。 這種方式簡單易懂,但缺乏自動
    的頭像 發(fā)表于 10-18 18:03 ?782次閱讀

    AN_1149開關電源布局指南

    電子發(fā)燒友網(wǎng)站提供《AN_1149開關電源布局指南.pdf》資料免費下載
    發(fā)表于 08-26 14:36 ?2次下載
    AN_1149<b class='flag-5'>開關電源</b><b class='flag-5'>布局</b>指南

    最小化啟動期間的輸出紋波

    電子發(fā)燒友網(wǎng)站提供《最小化啟動期間的輸出紋波.pdf》資料免費下載
    發(fā)表于 08-26 11:44 ?0次下載
    <b class='flag-5'>最小化</b>啟動期間的輸出紋波

    用于開關電源設計分析的AN-1566技術

    電子發(fā)燒友網(wǎng)站提供《用于開關電源設計分析的AN-1566技術.pdf》資料免費下載
    發(fā)表于 08-26 11:14 ?0次下載
    用于<b class='flag-5'>開關電源</b>設計<b class='flag-5'>熱</b>分析的AN-1566技術

    LLC開關電源可調性的原理

    關于“LLC開關電源不能做可調”的說法,實際上是一個誤解。LLC開關電源是完全可以通過調整開關頻率實現(xiàn)輸出電壓的可調的。以下是對LLC
    的頭像 發(fā)表于 08-08 09:59 ?1663次閱讀

    llc開關電源和普通開關電源的區(qū)別

    、一個電容C和一個變壓器T組成。電感L和電容C以及變壓器是串聯(lián)連接的,通過半橋開關頻率的變化調整輸出電壓。 工作原理 :LLC開關電源利用諧振原理進行工作,
    的頭像 發(fā)表于 08-08 09:51 ?2349次閱讀

    反激式開關電源反饋回路分析

    了廣泛應用。然而,要確保反激式開關電源的穩(wěn)定運行和高效性能,反饋回路的設計與分析至關重要。 一、反激式開關電源概述 1.1 工作原理 反激式開關電源
    的頭像 發(fā)表于 07-29 10:24 ?2183次閱讀

    開關電源PCB布局優(yōu)化,人人都該懂的“黃金法則”是什么?

    問:開關電源布局的黃金法則優(yōu)化電路板布局開關電源設計中的一個關鍵。良好的布局可確保
    發(fā)表于 07-01 17:11

    如何最大程度降低開關電源中的寄生參數(shù)

    (EMI)。此外,導致 EMI 的因素同樣也會降低效率,從而削弱開關電源關鍵的能效優(yōu)勢。 為了避免這些問題,設計人員在配置“回路”(電源電路中發(fā)生快速
    的頭像 發(fā)表于 05-05 15:53 ?983次閱讀
    如何最大程度降低<b class='flag-5'>開關電源</b>中的寄生參數(shù)

    關于窗口最小化的實現(xiàn)

    我想實現(xiàn)一個按鈕然后窗口最小化,為什么一運行就直接最小化了呢
    發(fā)表于 04-16 10:56

    開關電源設計的完整步驟與調試指南

    在設計開關電源之前,首先要理解開關電源的基本原理。開關電源通過開關管的開關動作
    發(fā)表于 04-02 10:08 ?1839次閱讀