脊柱椎管狹窄癥
椎管狹窄是一種與年齡相關(guān)的疾病,表現(xiàn)為椎管或神經(jīng)孔異常變窄,導(dǎo)致脊髓或神經(jīng)根受壓,椎管變窄可導(dǎo)致頸部和背部疼痛。隨著我國人口老齡化加劇,以退行性改變?yōu)橹饕虻淖倒塥M窄癥患者不斷增多。每1000名50歲以上的人中約有5人有這一癥狀,椎管狹窄目前沒有足夠的證據(jù)推薦任何特定類型的非手術(shù)治療,比如緩解疼痛和炎癥的藥物,腰椎硬膜外類固醇或麻醉劑注射,因?yàn)槟壳暗难芯繉Ψ鞘中g(shù)手段療法有效性的驗(yàn)證十分有限。而其中被證明的一種有效治療方法是要求苛刻的脊柱手術(shù),需要快速高分辨率成像系統(tǒng)與高精度的手術(shù)手段,部分削減脊柱的骨骼,減小、消除壓迫??勺?0-90%的人有良好的術(shù)后結(jié)果。
脊柱椎管是神經(jīng)的通道,看起來像脊柱后面的隧道。椎管狹窄有多種類型,具體取決于受壓迫的神經(jīng)部位,比如從脊髓分支到左側(cè)和右側(cè)擠壓在神經(jīng)的根部,比如脊柱管的中心變窄了致使馬尾神經(jīng)被擠壓(脊髓的尖端通過脊柱管是一堆細(xì)神經(jīng)。這部分稱為馬尾神經(jīng))。
治療手術(shù)例如椎板切除術(shù)僅切除一部分椎板,即脊髓骨的后部。它刻蝕了一個(gè)足夠大的洞,以減輕特定位置的壓力。這里顯示的是頸部,同樣的,手術(shù)也可以在腰椎中完成。
另外還有使用醫(yī)用激光進(jìn)行骨消融的新技術(shù),這需要更高精度與更高分辨率的成像系統(tǒng)指導(dǎo)和支持。
OCT技術(shù)
傳統(tǒng)的非光學(xué)相干成像技術(shù)的主要有 X射線計(jì)算機(jī)層析成像技術(shù)、超聲成像技術(shù)、磁共振成像技術(shù)等,但是這些生物醫(yī)學(xué)成像技術(shù)都存在著某些方面的不足,如X射線計(jì)算機(jī)層析成像對生物體的輻射比較大,而超聲成像的分辨率比較低,磁共振成像掃描時(shí)間長,不利于實(shí)時(shí)觀察等。在諸如這樣的高精度的脊柱外科手術(shù)中,需要實(shí)時(shí)預(yù)覽手術(shù)效果。OCT技術(shù)可擔(dān)此大任。
OTC(光學(xué)相干斷層掃描)成像技術(shù)是近些年迅速發(fā)展起來的一種新型生物醫(yī)學(xué)成像技術(shù),其歷史始于1990年山形大學(xué)丹野教授、1991年MIT的Dr.Fujimoto相繼發(fā)表論文,受到了極為廣泛的關(guān)注。1996年,美國Humphrey公司推出了世界上第一臺眼底OCT設(shè)備,從2005年左右開始快速商業(yè)實(shí)用化,并不斷改進(jìn),其具有非接觸、非侵入、無損傷、成像分辨率高、成像速度快、靈敏度高、實(shí)時(shí)性好、三維成像、易與內(nèi)窺鏡技術(shù)相結(jié)合、操作簡單等優(yōu)點(diǎn)。OTC技術(shù)填補(bǔ)了在毫米成像深度和微米成像分辨率尺度上生物醫(yī)學(xué)成像領(lǐng)域的空白。由于不需要引入外源造影劑,也不需要對生物組織進(jìn)行生理切片來制備樣品,光學(xué)相干層析成像技術(shù)被稱為“光學(xué)活檢”,并可用于病變診斷與治療,如眼科疾病的診斷與治療,如心血管的快速成像,如皮膚疾病的診斷,如炎癥性疾病的治療過程,如光熱治療及光切除的實(shí)時(shí)觀測等等。
在這近三十年期間,經(jīng)歷了很多變化與技術(shù)創(chuàng)新,現(xiàn)在除了生物醫(yī)療方面,也已拓展到更多的工業(yè)應(yīng)用領(lǐng)域,如熔深監(jiān)測、工件測試測量等。第一代OCT被稱為時(shí)域光學(xué)相干層析成像系統(tǒng)(TDOCT),后來有人將光柵光譜儀與線陣探測器應(yīng)用到OCT上形成了第二代OCT,即譜域光學(xué)相干層析成像系統(tǒng)(SDOCT),成像速度得到了很大的提升;到近幾年,隨著掃頻光源的出現(xiàn),又出現(xiàn)了掃頻光學(xué)相干層析成像系統(tǒng)(SSOCT)。譜域OCT和掃頻OCT又被合稱為頻域光學(xué)相干層析成像系統(tǒng)(FDOCT)。OCT成像系統(tǒng)利用寬帶光源的低相干干涉技術(shù)獲取高分辨率的層析成像,典型的OCT成像系統(tǒng)如下圖所示。
時(shí)域TD-OCT系統(tǒng)低相干光源出射光束,在耦合器被分成兩束頻率相同,初始相位差恒定的平行光,兩束行光分別進(jìn)入邁克爾遜干涉儀結(jié)構(gòu)的參考臂和樣品臂之中,其中,參考臂的光由參考鏡反射而返回后續(xù)光路,樣品臂的光則要經(jīng)過樣品表層的散射與反射作用后返回光路。若是兩束返回光的光程差保持在一個(gè)合適的范圍內(nèi),即處于相干長度之內(nèi),就可以在耦合器內(nèi)發(fā)生干涉現(xiàn)象,干涉光譜中就攜帶了不同的光程差信息,而這個(gè)光程差的信息有從本質(zhì)上反應(yīng)了樣品表面不同深度層次的信息,由探測器將光信號轉(zhuǎn)化為電信號,再將電信號送入電腦中進(jìn)行更進(jìn)一步的處理,提取出樣品信息并用一種更直觀的方式表現(xiàn)出來,完成圖像重建工作。
SD-OCT的成像實(shí)現(xiàn)過程與TD-OCT類似,區(qū)別在于SD-OCT是通過對測量光譜進(jìn)行快速傅里葉變換獲得樣本組織的深度信息,而不再需要軸向移動參考鏡對樣品進(jìn)行深度位置信息掃描(A-scan)。因此,頻域FD-OCT的靈敏度可達(dá)TD-OCT的100倍,速度可達(dá)TD-OCT的10倍。根據(jù)FD-COCT的構(gòu)成,分為(1)使用寬帶光源,一般是超發(fā)光二極管,和光柵光譜儀取得信號方式的Spectrol Domain(以下稱為SD-COCT)(2)高速波長掃描型光源和與其同步取得數(shù)據(jù)方式的Swept Souce OCT(以下稱為SS-OCT)。SD-OCT有可以用相對可實(shí)現(xiàn)簡單構(gòu)成的優(yōu)點(diǎn),但是測量深度和測量速度有局限性。而SS-OCT在圖像的取得速度和成像深度方面有優(yōu)勢,常被作為高端產(chǎn)品的核心而采用。SS-OCT的基本構(gòu)成如圖b所示。
掃頻源OCT的成像性能由掃頻光源的輸出特性決定:成像速度取決于掃頻光源的掃描速度;軸向分辨能力取決于掃頻光源的掃頻范圍;成像深度由掃頻光源瞬時(shí)線寬決定;成像靈敏度與掃頻光源輸出功率有關(guān)
虹科高速掃頻激光源
近期,德國聯(lián)邦經(jīng)濟(jì)事務(wù)和氣候行動部(BMWK)批準(zhǔn)和資助了一個(gè)基于OCT技術(shù)的新項(xiàng)目——在OCT控制下通過激光消融治療脊柱狹窄的創(chuàng)新療法(InTherSteLa——Innovative Therapie der Spinalkanalstenose mittels Laserablation unter OCT-Kontrolle),已獲得249832歐元的資金。漢諾威激光中心 e.V.領(lǐng)導(dǎo)該項(xiàng)目,周期為2022年9月1日至2025年2月28日。
這個(gè)激動人心的項(xiàng)目旨在開發(fā)一種靈活的工作探頭,能夠在不危及更深層組織層的情況下實(shí)現(xiàn)高精度的骨骼去除。該項(xiàng)目將結(jié)合兩種技術(shù)來獲得這一點(diǎn):使用OCT在實(shí)時(shí)成像預(yù)覽控制下通過醫(yī)用激光進(jìn)行骨消融。
這需要高速OCT成像來提供實(shí)時(shí)預(yù)覽,而虹科Caliper-HERO就是能將其商業(yè)化并付諸實(shí)踐應(yīng)用的可行技術(shù)。因?yàn)镃ALIPER-HERO是一款緊湊型交鑰匙1060nm激光模塊,具有高達(dá)1.7MHz波長掃描速率,適用于超快3D OCT成像應(yīng)用。HERO具有較長的相干長度,可實(shí)現(xiàn)較大的成像深度,并結(jié)合穩(wěn)定的連續(xù)波長掃描,是需要高分辨率和高幀速率的3D成像應(yīng)用的理想選擇。采用單片集成MEMS-VCSEL結(jié)構(gòu),可靠的VCSEL數(shù)據(jù)通信技術(shù)和單一材料的MEMS系統(tǒng),以提高魯棒性。
虹科 Caliper-HERO 獲得專利的高效諧振振蕩器(HERO?)技術(shù)通過在真空中操作MEMS反射鏡來實(shí)現(xiàn)MHz級別快速掃描速率。長期的掃描穩(wěn)定性可使用具有預(yù)校準(zhǔn)FFT線性化的單通道DAQ實(shí)現(xiàn)高效、高吞吐量的數(shù)據(jù)采集。
審核編輯黃昊宇
-
OCT成像
+關(guān)注
關(guān)注
0文章
8瀏覽量
6519
發(fā)布評論請先 登錄
相關(guān)推薦
評論