0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

同步FIFO之Verilog實(shí)現(xiàn)

FPGA之家 ? 來源:FPGA之家 ? 作者:FPGA之家 ? 2022-11-01 09:57 ? 次閱讀


1.定義

FIFO是英文First In First Out 的縮寫,是一種先進(jìn)先出的數(shù)據(jù)緩存器,他與普通存儲(chǔ)器的區(qū)別是沒有外部讀寫地址線,這樣使用起來非常簡(jiǎn)單,但缺點(diǎn)就是只能順序?qū)懭霐?shù)據(jù),順序的讀出數(shù)據(jù), 其數(shù)據(jù)地址由內(nèi)部讀寫指針自動(dòng)加1完成,不能像普通存儲(chǔ)器那樣可以由地址線決定讀取或?qū)懭肽硞€(gè)指定的地址。

FIFO一般用于不同時(shí)鐘域之間的數(shù)據(jù)傳輸,比如FIFO的一端是AD數(shù)據(jù)采集, 另一端是計(jì)算機(jī)的PCI總線,假設(shè)其AD采集的速率為16位 100K SPS,那么每秒的數(shù)據(jù)量為100K×16bit=1.6Mbps,而PCI總線的速度為33MHz,總線寬度32bit,其最大傳輸速率為 1056Mbps,在兩個(gè)不同的時(shí)鐘域間就可以采用FIFO來作為數(shù)據(jù)緩沖。另外對(duì)于不同寬度的數(shù)據(jù)接口也可以用FIFO,例如單片機(jī)位8位數(shù)據(jù)輸出,而 DSP可能是16位數(shù)據(jù)輸入,在單片機(jī)與DSP連接時(shí)就可以使用FIFO來達(dá)到數(shù)據(jù)匹配的目的。

FIFO的分類根均FIFO工作的時(shí)鐘域,可以將FIFO分為同步FIFO和異步FIFO。同步FIFO是指讀時(shí)鐘和寫時(shí)鐘為同一個(gè)時(shí)鐘。在時(shí)鐘沿來臨時(shí)同時(shí)發(fā)生讀寫操作。異步FIFO是指讀寫時(shí)鐘不一致,讀寫時(shí)鐘是互相獨(dú)立的。

FIFO設(shè)計(jì)的難點(diǎn) FIFO設(shè)計(jì)的難點(diǎn)在于怎樣判斷FIFO的空/滿狀態(tài)。為了保證數(shù)據(jù)正確的寫入或讀出,而不發(fā)生益處或讀空的狀態(tài)出現(xiàn),必須保證FIFO在滿的情況下,不 能進(jìn)行寫操作。在空的狀態(tài)下不能進(jìn)行讀操作。怎樣判斷FIFO的滿/空就成了FIFO設(shè)計(jì)的核心問題。

1.同步FIFO之Verilog實(shí)現(xiàn)

同步FIFO的意思是說FIFO的讀寫時(shí)鐘是同一個(gè)時(shí)鐘,不同于異步FIFO,異步FIFO的讀寫時(shí)鐘是完全異步的。同步FIFO的對(duì)外接口包括時(shí)鐘,清零,讀請(qǐng)求,寫請(qǐng)求,數(shù)據(jù)輸入總線,數(shù)據(jù)輸出總線,空以及滿信號(hào)。下面分別對(duì)同步FIFO的對(duì)外接口信號(hào)作一描述:

1. 時(shí)鐘,輸入,用于同步FIFO的讀和寫,上升沿有效;

2. 清零,輸入,異步清零信號(hào),低電平有效,該信號(hào)有效時(shí),F(xiàn)IFO被清空;

3. 寫請(qǐng)求,輸入,低電平有效,該信號(hào)有效時(shí),表明外部電路請(qǐng)求向FIFO寫入數(shù)據(jù);

4. 讀請(qǐng)求,輸入,低電平有效,該信號(hào)有效時(shí),表明外部電路請(qǐng)求從FIFO中讀取數(shù)據(jù);

5. 數(shù)據(jù)輸入總線,輸入,當(dāng)寫信號(hào)有效時(shí),數(shù)據(jù)輸入總線上的數(shù)據(jù)被寫入到FIFO中;

6. 數(shù)據(jù)輸出總線,輸出,當(dāng)讀信號(hào)有效時(shí),數(shù)據(jù)從FIFO中被讀出并放到數(shù)據(jù)輸出總線上;

7. 空,輸出,高電平有效,當(dāng)該信號(hào)有效時(shí),表明FIFO中沒有任何數(shù)據(jù),全部為空;

8. 滿,輸出,高電平有效,當(dāng)該信號(hào)有效時(shí),表明FIFO已經(jīng)滿了,沒有空間可用來存貯數(shù)據(jù)。

下面的框圖主要描述同步FIFO的內(nèi)部結(jié)構(gòu),畫出框圖有助于對(duì)電路結(jié)構(gòu)的理解,同樣也有助于RTL代碼的編寫 :

b2d74312-5987-11ed-a3b6-dac502259ad0.jpg

…………………………………………………………………………………………………………………………………………………………………………………………..

同步FIFO的Verilog代碼 之一
在modlesim中驗(yàn)證過。

/******************************************************
A fifo controller verilog description.
******************************************************/
module fifo(datain, rd, wr, rst, clk, dataout, full, empty);
input [7:0] datain;
input rd, wr, rst, clk;
output [7:0] dataout;
output full, empty;
wire [7:0] dataout;
reg full_in, empty_in;
reg [7:0] mem [15:0];
reg [3:0] rp, wp;
assign full = full_in;
assign empty = empty_in;
// memory read out
assign dataout = mem[rp];
// memory write in
always@(posedge clk) begin
    if(wr && ~full_in) mem[wp]<=datain;
end
// memory write pointer increment
always@(posedge clk or negedge rst) begin
    if(!rst) wp<=0;
    else begin
      if(wr && ~full_in) wp<= wp+1'b1;
    end
end
// memory read pointer increment
always@(posedge clk or negedge rst)begin
    if(!rst) rp <= 0;
    else begin
      if(rd && ~empty_in) rp <= rp + 1'b1;
    end
end
// Full signal generate
always@(posedge clk or negedge rst) begin
    if(!rst) full_in <= 1'b0;
    else begin
      if( (~rd && wr)&&((wp==rp-1)||(rp==4'h0&&wp==4'hf)))
          full_in <= 1'b1;
      else if(full_in && rd) full_in <= 1'b0;
    end
end
// Empty signal generate
always@(posedge clk or negedge rst) begin
    if(!rst) empty_in <= 1'b1;
    else begin
      if((rd&&~wr)&&(rp==wp-1 || (rp==4'hf&&wp==4'h0)))
        empty_in<=1'b1;
      else if(empty_in && wr) empty_in<=1'b0;
    end
end
endmodule

…………………………………………………………………………………………………………………………………………………………………………………………..

同步FIFO的Verilog代碼 之二 這一種設(shè)計(jì)的FIFO,是基于觸發(fā)器的。寬度,深度的擴(kuò)展更加方便,結(jié)構(gòu)化跟強(qiáng)。以下代碼在modelsim中驗(yàn)證過。

module fifo_cell (sys_clk, sys_rst_n, read_fifo, write_fifo, fifo_input_data,
                        next_cell_data, next_cell_full, last_cell_full, cell_data_out, cell_full);
                        parameter WIDTH =8;
                        parameter D = 2;
                        input sys_clk;
                        input sys_rst_n;
                        input read_fifo, write_fifo;
                        input [WIDTH-1:0] fifo_input_data;
                        input [WIDTH-1:0] next_cell_data;
                        input next_cell_full, last_cell_full;
                        output [WIDTH-1:0] cell_data_out;
                        output cell_full;
                        reg [WIDTH-1:0] cell_data_reg_array;
                        reg [WIDTH-1:0] cell_data_ld;
                        reg cell_data_ld_en;
                        reg cell_full;
                        reg cell_full_next;
                        assign cell_data_out=cell_data_reg_array;
                        always @(posedge sys_clk or negedge sys_rst_n)
                           if (!sys_rst_n)
                              cell_full <= #D 0;
                           else if (read_fifo || write_fifo)
                              cell_full <= #D cell_full_next;
                        always @(write_fifo or read_fifo or next_cell_full or last_cell_full or cell_full)
                           casex ({read_fifo, write_fifo})
                               2'b00: cell_full_next = cell_full;
                               2'b01: cell_full_next = next_cell_full;
                               2'b10: cell_full_next = last_cell_full;
                               2'b11: cell_full_next = cell_full;
                           endcase
                         always @(posedge sys_clk or negedge sys_rst_n)
                              if (!sys_rst_n)
                                 cell_data_reg_array [WIDTH-1:0] <= #D 0;
                              else if (cell_data_ld_en)
                                 cell_data_reg_array [WIDTH-1:0] <= #D cell_data_ld [WIDTH-1:0];
                         always @(write_fifo or read_fifo or cell_full or last_cell_full)   
                              casex ({write_fifo,read_fifo,cell_full,last_cell_full})
                                  4'bx1_xx: cell_data_ld_en = 1'b1;
                                  4'b10_01: cell_data_ld_en = 1'b1;
                                  default: cell_data_ld_en =1'b0;
                              endcase
                         always @(write_fifo or read_fifo or next_cell_full or cell_full or last_cell_full or fifo_input_data or next_cell_data)
                              casex ({write_fifo, read_fifo, next_cell_full, cell_full, last_cell_full})
                                 5'b10_x01: cell_data_ld[WIDTH-1:0] = fifo_input_data[WIDTH-1:0];
                                 5'b11_01x: cell_data_ld[WIDTH-1:0] = fifo_input_data[WIDTH-1:0];
                                 default: cell_data_ld[WIDTH-1:0] = next_cell_data[WIDTH-1:0];
                              endcase
endmodule



module fifo_4cell(sys_clk, sys_rst_n, fifo_input_data, write_fifo, fifo_out_data,
                  read_fifo, full_cell0, full_cell1, full_cell2, full_cell3);
                  parameter WIDTH = 8;
                  parameter D = 2;
                  input sys_clk;
                  input sys_rst_n;
                  input [WIDTH-1:0] fifo_input_data;
                  output [WIDTH-1:0] fifo_out_data;
                  input read_fifo, write_fifo;
                  output full_cell0, full_cell1, full_cell2, full_cell3;
                  wire [WIDTH-1:0] dara_out_cell0, data_out_cell1, data_out_cell2,
                                   data_out_cell3, data_out_cell4;
                  wire full_cell4;
                  fifo_cell #(WIDTH,D) cell0
                  ( .sys_clk (sys_clk),
                    .sys_rst_n (sys_rst_n),
                    .fifo_input_data (fifo_input_data[WIDTH-1:0]),
                    .write_fifo (write_fifo),
                    .next_cell_data (data_out_cell1[WIDTH-1:0]),
                    .next_cell_full (full_cell1),
                    .last_cell_full (1'b1),
                    .cell_data_out (fifo_out_data [WIDTH-1:0]),
                    .read_fifo (read_fifo),
                    .cell_full (full_cell0)
                   );

                  fifo_cell #(WIDTH,D) cell1
                  ( .sys_clk (sys_clk),
                    .sys_rst_n (sys_rst_n),
                    .fifo_input_data (fifo_input_data[WIDTH-1:0]),
                    .write_fifo (write_fifo),
                    .next_cell_data (data_out_cell2[WIDTH-1:0]),
                    .next_cell_full (full_cell2),
                    .last_cell_full (full_cell0),
                    .cell_data_out (data_out_cell1[WIDTH-1:0]),
                    .read_fifo (read_fifo),
                    .cell_full (full_cell1)
                   );                  
                  fifo_cell #(WIDTH,D) cell2
                  ( .sys_clk (sys_clk),
                    .sys_rst_n (sys_rst_n),
                    .fifo_input_data (fifo_input_data[WIDTH-1:0]),
                    .write_fifo (write_fifo),
                    .next_cell_data (data_out_cell3[WIDTH-1:0]),
                    .next_cell_full (full_cell3),
                    .last_cell_full (full_cell1),
                    .cell_data_out (data_out_cell2[WIDTH-1:0]),
                    .read_fifo (read_fifo),
                    .cell_full (full_cell2)
                   );                  

                  fifo_cell #(WIDTH,D) cell3
                  ( .sys_clk (sys_clk),
                    .sys_rst_n (sys_rst_n),
                    .fifo_input_data (fifo_input_data[WIDTH-1:0]),
                    .write_fifo (write_fifo),
                    .next_cell_data (data_out_cell4[WIDTH-1:0]),
                    .next_cell_full (full_cell4),
                    .last_cell_full (full_cell2),
                    .cell_data_out (data_out_cell3[WIDTH-1:0]),
                    .read_fifo (read_fifo),
                    .cell_full (full_cell3)
                   );     
                   assign data_out_cell4[WIDTH-1:0] = {WIDTH{1'B0}};
                   assign full_cell4 = 1'b0;
endmodule

2.異步FIFO之Verilog實(shí)現(xiàn)

FIFO (先進(jìn)先出隊(duì)列)是一種在電子系統(tǒng)得到廣泛應(yīng)用的器件,通常用于數(shù)據(jù)的緩存和用于容納異步信號(hào)的頻率或相位的差異。FIFO的實(shí)現(xiàn)通常是利用雙口RAM和讀寫地址產(chǎn)生模塊來實(shí)現(xiàn)的。FIFO的接口信號(hào)包括異步的寫時(shí)鐘(wr_clk)和讀時(shí)鐘(rd_clk)、與寫時(shí)鐘同步的寫有效(wren)和寫數(shù)據(jù)(wr_data)、與讀時(shí)鐘同步的讀有效(rden)和讀數(shù)據(jù)(rd_data)。為了實(shí)現(xiàn)正確的讀寫和避免FIFO的上溢或下溢,通常還應(yīng)該給出與讀時(shí)鐘和寫時(shí)鐘同步的FIFO的空標(biāo)志(empty)和滿標(biāo)志(full)以禁止讀寫操作。

1 異步FIFO功能描述

圖1給出了FIFO的接口信號(hào)和內(nèi)部模塊圖。
由圖1可以看出,寫地址產(chǎn)生模塊根據(jù)寫時(shí)鐘和寫有效信號(hào)產(chǎn)生遞增的寫地睛,讀地址產(chǎn)生模塊根據(jù)讀時(shí)鐘和讀有效信號(hào)產(chǎn)生遞增的讀地址。FIFO的操作如下:在寫時(shí)鐘wr_clk的升沿,當(dāng)wren有效時(shí),將wr_data寫入雙口RAM中寫地址對(duì)應(yīng)的位置中;始終將讀地址對(duì)應(yīng)的雙口RAM中的數(shù)據(jù)輸出到讀數(shù)據(jù)總線上。這樣就實(shí)現(xiàn)了先進(jìn)先出的功能。
b2fa9a06-5987-11ed-a3b6-dac502259ad0.jpg

寫地址產(chǎn)生模塊還根據(jù)讀地址和寫地址關(guān)系產(chǎn)生FIFO的滿標(biāo)志。當(dāng)wren有效時(shí),若寫地址+2=讀地址時(shí),full為1;當(dāng)wren無效時(shí),若寫地址+ 1=讀地址時(shí),full為1。讀地址產(chǎn)生模塊還根據(jù)讀地址和寫地址的差產(chǎn)生FIFO的空標(biāo)志。當(dāng)rden有效時(shí),若寫地址-1=讀地址時(shí),empty為 1;當(dāng)rden無效時(shí),若寫地址=讀地址時(shí),empty為1。按照以上方式產(chǎn)生標(biāo)志信號(hào)是為了提前一個(gè)時(shí)鐘周期產(chǎn)生對(duì)應(yīng)的標(biāo)志信號(hào)。
由于空標(biāo)志和滿標(biāo)志控制了FIFO的操作,因此標(biāo)志錯(cuò)誤會(huì)引起操作的錯(cuò)誤。如上所述,標(biāo)志的產(chǎn)生是通過對(duì)讀寫地址的比較產(chǎn)生的,當(dāng)讀寫時(shí)鐘完全異步時(shí),對(duì)讀寫地址進(jìn)行比較時(shí),可能得出錯(cuò)誤的結(jié)果。例如,在讀地址變化過程中,由于讀地址的各位變化并不同步,計(jì)算讀寫地址的差值,可能產(chǎn)生錯(cuò)誤的差值,導(dǎo)致產(chǎn)生錯(cuò)誤的滿標(biāo)志信號(hào)。若將未滿標(biāo)志置為滿標(biāo)志時(shí),可能降低了應(yīng)用的性能,降低寫數(shù)據(jù)速率;而將滿置標(biāo)志置為未滿時(shí),執(zhí)行一次寫操作,則可能產(chǎn)生溢出錯(cuò)誤,這對(duì)于實(shí)際應(yīng)用來說是絕對(duì)應(yīng)該避免的。空標(biāo)志信號(hào)的產(chǎn)生也可能產(chǎn)生類似的錯(cuò)誤。

2 異步FIFO的改進(jìn)設(shè)計(jì)

從以上分析中可以看出,異步FIFO之所以會(huì)發(fā)生錯(cuò)誤是國為在地址變化時(shí),由于多位地址各位變化時(shí)間不同,異步時(shí)鐘對(duì)其進(jìn)行采樣時(shí)數(shù)值可能為不同于地址變化喪后數(shù)值的其他值,異步產(chǎn)生錯(cuò)誤的空標(biāo)志和滿標(biāo)志,以致于產(chǎn)生FIFO的操作錯(cuò)誤。
格雷碼是一種在相鄰計(jì)數(shù)值之間只有一位發(fā)生變化的編碼方式??梢钥闯觯糇x寫地址采用格雷碼編碼方式,就可以解決上面的問題。
為了應(yīng)用的靈活,還增加了兩個(gè)標(biāo)志信號(hào),將滿(almosf_full)標(biāo)志和空(almost_empty)標(biāo)志分別定義如下:當(dāng)寫地址與讀地址的距離小于某個(gè)預(yù)先定義數(shù)值時(shí),almost_full為1;當(dāng)讀地址與寫地址的距離小于這個(gè)預(yù)先定義的數(shù)值時(shí),almost_empty為1。

3 異步FIFO的Verilog

…………………………………………………………………………………………………………………………………………………………………………………………………………………………….
異步FIFO的Verilog代碼 之一
這個(gè)是基于RAM的異步FIFO代碼,個(gè)人認(rèn)為代碼結(jié)構(gòu)簡(jiǎn)單易懂,非常適合于考試中填寫。記得10月份參加威盛的筆試的時(shí)候,就考過異步FIFO的實(shí)現(xiàn)。想當(dāng)初要是早點(diǎn)復(fù)習(xí),可能就可以通過威盛的筆試了。

與之前的用RAM實(shí)現(xiàn)的同步FIFO的程序相比,異步更為復(fù)雜。增加了讀寫控制信號(hào)的跨時(shí)鐘域的同步。此外,判空與判滿的也稍有不同。

module fifo1(rdata, wfull, rempty, wdata, winc, wclk, wrst_n,rinc, rclk, rrst_n);
parameter DSIZE = 8; parameter ASIZE = 4;
output [DSIZE-1:0] rdata;
output wfull;
output rempty;
input [DSIZE-1:0] wdata;
input winc, wclk, wrst_n;
input rinc, rclk, rrst_n;
reg wfull,rempty;
reg [ASIZE:0] wptr, rptr, wq2_rptr, rq2_wptr, wq1_rptr,rq1_wptr;
reg [ASIZE:0] rbin, wbin;
reg [DSIZE-1:0] mem[0:(1<1];
wire [ASIZE-1:0] waddr, raddr;
wire [ASIZE:0] rgraynext, rbinnext,wgraynext,wbinnext;
wire rempty_val,wfull_val;
//-----------------雙口RAM存儲(chǔ)器--------------------
assign rdata=mem[raddr];
always@(posedge wclk)
if (winc && !wfull) mem[waddr] <= wdata;
//-------------同步rptr 指針-------------------------
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) {wq2_rptr,wq1_rptr} <= 0;
else {wq2_rptr,wq1_rptr} <= {wq1_rptr,rptr};
//-------------同步wptr指針---------------------------
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) {rq2_wptr,rq1_wptr} <= 0;
else {rq2_wptr,rq1_wptr} <= {rq1_wptr,wptr};
//-------------rempty產(chǎn)生與raddr產(chǎn)生-------------------
always @(posedge rclk or negedge rrst_n) // GRAYSTYLE2 pointer
begin
if (!rrst_n) {rbin, rptr} <= 0;
else {rbin, rptr} <= {rbinnext, rgraynext};
end
// Memory read-address pointer (okay to use binary to address memory)
assign raddr = rbin[ASIZE-1:0];
assign rbinnext = rbin + (rinc & ~rempty);
assign rgraynext = (rbinnext>>1) ^ rbinnext;
// FIFO empty when the next rptr == synchronized wptr or on reset
assign rempty_val = (rgraynext == rq2_wptr);
always @(posedge rclk or negedge rrst_n)
begin
if (!rrst_n) rempty <= 1'b1;
else rempty <= rempty_val;
end
//---------------wfull產(chǎn)生與waddr產(chǎn)生------------------------------
always @(posedge wclk or negedge wrst_n) // GRAYSTYLE2 pointer
if (!wrst_n) {wbin, wptr} <= 0;
else {wbin, wptr} <= {wbinnext, wgraynext};
// Memory write-address pointer (okay to use binary to address memory)
assign waddr = wbin[ASIZE-1:0];
assign wbinnext = wbin + (winc & ~wfull);
assign wgraynext = (wbinnext>>1) ^ wbinnext;
assign wfull_val = (wgraynext=={~wq2_rptr[ASIZE:ASIZE-1], wq2_rptr[ASIZE-2:0]}); //:ASIZE-1]
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) wfull <= 1'b0;
else wfull <= wfull_val;
endmodule

………………………………………………………………………………………………………………………………………………………………

異步FIFO的Verilog代碼 之二
與前一段異步FIFO代碼的主要區(qū)別在于,空/滿狀態(tài)標(biāo)志的不同算法。

第一個(gè)算法:Clifford E. Cummings的文章中提到的STYLE #1,構(gòu)造一個(gè)指針寬度為N+1,深度為2^N字節(jié)的FIFO(為便方比較將格雷碼指針轉(zhuǎn)換為二進(jìn)制指針)。當(dāng)指針的二進(jìn)制碼中最高位不一致而其它N位都 相等時(shí),F(xiàn)IFO為滿(在Clifford E. Cummings的文章中以格雷碼表示是前兩位均不相同,而后兩位LSB相同為滿,這與換成二進(jìn)制表示的MSB不同其他相同為滿是一樣的)。當(dāng)指針完全相 等時(shí),F(xiàn)IFO為空。

這種方法思路非常明了,為了比較不同時(shí)鐘產(chǎn)生的指針,需要把不同時(shí)鐘域的信號(hào)同步到本時(shí)鐘域中來,而使用Gray碼的目的就是使這個(gè)異步同步化的過 程發(fā)生亞穩(wěn)態(tài)的機(jī)率最小,而為什么要構(gòu)造一個(gè)N+1的指針,Clifford E. Cummings也闡述的很明白,有興趣的讀者可以看下作者原文是怎么論述的,Clifford E. Cummings的這篇文章有Rev1.1 Rev1.2兩個(gè)版本,兩者在比較Gray碼指針時(shí)的方法略有不同,個(gè)Rev1.2版更為精簡(jiǎn)。

第二種算法:Clifford E. Cummings的文章中提到的STYLE #2。它將FIFO地址分成了4部分,每部分分別用高兩位的MSB 00 、01、 11、 10決定FIFO是否為going full 或going empty (即將滿或空)。如果寫指針的高兩位MSB小于讀指針的高兩位MSB則FIFO為“幾乎滿”,若寫指針的高兩位MSB大于讀指針的高兩位MSB則FIFO 為“幾乎空”。

它是利用將地址空間分成4個(gè)象限(也就是四個(gè)等大小的區(qū)域),然后觀察兩個(gè)指針的相對(duì)位置,如果寫指針落后讀指針一個(gè)象限(25%的距離,呵呵), 則證明很可能要寫滿,反之則很可能要讀空,這個(gè)時(shí)候分別設(shè)置兩個(gè)標(biāo)志位dirset和dirrst,然后在地址完全相等的情況下,如果dirset有效就 是寫滿,如果dirrst有效就是讀空。

這種方法對(duì)深度為2^N字節(jié)的FIFO只需N位的指針即可,處理的速度也較第一種方法快。

這段是說明的原話,算法一,還好理解。算法二,似乎沒有說清楚,不太明白。有興趣的可以查查論文,詳細(xì)研究下。

總之,第二種寫法是推薦的寫法。因?yàn)楫惒降亩鄷r(shí)鐘設(shè)計(jì)應(yīng)按以下幾個(gè)原則進(jìn)行設(shè)計(jì):
1,盡可能的將多時(shí)鐘的邏輯電路(非同步器)分割為多個(gè)單時(shí)鐘的模塊,這樣有利于靜態(tài)時(shí)序分析工具來進(jìn)行時(shí)序驗(yàn)證。
2,同步器的實(shí)現(xiàn)應(yīng)使得所有輸入來自同一個(gè)時(shí)鐘域,而使用另一個(gè)時(shí)鐘域的異步時(shí)鐘信號(hào)采樣數(shù)據(jù)。
3,面向時(shí)鐘信號(hào)的命名方式可以幫助我們確定那些在不同異步時(shí)鐘域間需要處理的信號(hào)。
4,當(dāng)存在多個(gè)跨時(shí)鐘域的控制信號(hào)時(shí),我們必須特別注意這些信號(hào),保證這些控制信號(hào)到達(dá)新的時(shí)鐘域仍然能夠保持正確的順序。

module fifo2 (rdata, wfull, rempty, wdata,
winc, wclk, wrst_n, rinc, rclk, rrst_n);
parameter DSIZE = 8;
parameter ASIZE = 4;
output [DSIZE-1:0] rdata;
output wfull;
output rempty;
input [DSIZE-1:0] wdata;
input winc, wclk, wrst_n;
input rinc, rclk, rrst_n;
wire [ASIZE-1:0] wptr, rptr;
wire [ASIZE-1:0] waddr, raddr;
async_cmp #(ASIZE) async_cmp(.aempty_n(aempty_n),
.afull_n(afull_n),
.wptr(wptr), .rptr(rptr),
.wrst_n(wrst_n));
fifomem2 #(DSIZE, ASIZE) fifomem2(.rdata(rdata),
.wdata(wdata),
.waddr(wptr),
.raddr(rptr),
.wclken(winc),
.wclk(wclk));
rptr_empty2 #(ASIZE) rptr_empty2(.rempty(rempty),
.rptr(rptr),
.aempty_n(aempty_n),
.rinc(rinc),
.rclk(rclk),
.rrst_n(rrst_n));
wptr_full2 #(ASIZE) wptr_full2(.wfull(wfull),
.wptr(wptr),
.afull_n(afull_n),
.winc(winc),
.wclk(wclk),
.wrst_n(wrst_n));
endmodule
module fifomem2 (rdata, wdata, waddr, raddr, wclken, wclk);
parameter DATASIZE = 8; // Memory data word width
parameter ADDRSIZE = 4; // Number of memory address bits
parameter DEPTH = 1<// DEPTH = 2**ADDRSIZE
output [DATASIZE-1:0] rdata;
input [DATASIZE-1:0] wdata;
input [ADDRSIZE-1:0] waddr, raddr;
input wclken, wclk;
`ifdef VENDORRAM
// instantiation of a vendor's dual-port RAM
VENDOR_RAM MEM (.dout(rdata), .din(wdata),
.waddr(waddr), .raddr(raddr),
.wclken(wclken), .clk(wclk));
`else
reg [DATASIZE-1:0] MEM [0:DEPTH-1];
assign rdata = MEM[raddr];
always @(posedge wclk)
if (wclken) MEM[waddr] <= wdata;
`endif
endmodule
module async_cmp (aempty_n, afull_n, wptr, rptr, wrst_n);
parameter ADDRSIZE = 4;
parameter N = ADDRSIZE-1;
output aempty_n, afull_n;
input [N:0] wptr, rptr;
input wrst_n;
reg direction;
wire high = 1'b1;
wire dirset_n = ~( (wptr[N]^rptr[N-1]) & ~(wptr[N-1]^rptr[N]));
wire dirclr_n = ~((~(wptr[N]^rptr[N-1]) & (wptr[N-1]^rptr[N])) |
~wrst_n);
always @(posedge high or negedge dirset_n or negedge dirclr_n)
if (!dirclr_n) direction <= 1'b0;
else if (!dirset_n) direction <= 1'b1;
else direction <= high;
//always @(negedge dirset_n or negedge dirclr_n)
//if (!dirclr_n) direction <= 1'b0;
//else direction <= 1'b1;
assign aempty_n = ~((wptr == rptr) && !direction);
assign afull_n = ~((wptr == rptr) && direction);
endmodule
module rptr_empty2 (rempty, rptr, aempty_n, rinc, rclk, rrst_n);
parameter ADDRSIZE = 4;
output rempty;
output [ADDRSIZE-1:0] rptr;
input aempty_n;
input rinc, rclk, rrst_n;
reg [ADDRSIZE-1:0] rptr, rbin;
reg rempty, rempty2;
wire [ADDRSIZE-1:0] rgnext, rbnext;
//---------------------------------------------------------------
// GRAYSTYLE2 pointer
//---------------------------------------------------------------
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) begin
rbin <= 0;
rptr <= 0;
end
else begin
rbin <= rbnext;
rptr <= rgnext;
end
//---------------------------------------------------------------
// increment the binary count if not empty
//---------------------------------------------------------------
assign rbnext = !rempty ? rbin + rinc : rbin;
assign rgnext = (rbnext>>1) ^ rbnext; // binary-to-gray conversion
always @(posedge rclk or negedge aempty_n)
if (!aempty_n) {rempty,rempty2} <= 2'b11;
else {rempty,rempty2} <= {rempty2,~aempty_n};
endmodule
module wptr_full2 (wfull, wptr, afull_n, winc, wclk, wrst_n);
parameter ADDRSIZE = 4;
output wfull;
output [ADDRSIZE-1:0] wptr;
input afull_n;
input winc, wclk, wrst_n;
reg [ADDRSIZE-1:0] wptr, wbin;
reg wfull, wfull2;
wire [ADDRSIZE-1:0] wgnext, wbnext;
//---------------------------------------------------------------
// GRAYSTYLE2 pointer
//---------------------------------------------------------------
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) begin
wbin <= 0;
wptr <= 0;
end
else begin
wbin <= wbnext;
wptr <= wgnext;
end
//---------------------------------------------------------------
// increment the binary count if not full
//---------------------------------------------------------------
assign wbnext = !wfull ? wbin + winc : wbin;
assign wgnext = (wbnext>>1) ^ wbnext; // binary-to-gray conversion
always @(posedge wclk or negedge wrst_n or negedge afull_n)
if (!wrst_n ) {wfull,wfull2} <= 2'b00;
else if (!afull_n) {wfull,wfull2} <= 2'b11;
else {wfull,wfull2} <= {wfull2,~afull_n};
endmodule

審核編輯 :李倩


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • fifo
    +關(guān)注

    關(guān)注

    3

    文章

    388

    瀏覽量

    43679
  • Verilog
    +關(guān)注

    關(guān)注

    28

    文章

    1351

    瀏覽量

    110100
  • 緩存器
    +關(guān)注

    關(guān)注

    0

    文章

    63

    瀏覽量

    11659
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    使用DAC3482 fifo同步失敗的原因?怎么處理?

    進(jìn)行數(shù)據(jù)采樣,所以設(shè)置為DATACLK的2倍)、240M(DATACLK,輸出到3482芯片)、10M(SCLK,配置3482寄存器的串口驅(qū)動(dòng)時(shí)鐘,輸出到3482)這3個(gè)時(shí)鐘。 FIFO使用雙同步
    發(fā)表于 12-23 06:02

    Verilog 與 ASIC 設(shè)計(jì)的關(guān)系 Verilog 代碼優(yōu)化技巧

    Circuit,專用集成電路)設(shè)計(jì)是一個(gè)復(fù)雜的過程,涉及到邏輯設(shè)計(jì)、綜合、布局布線、物理驗(yàn)證等多個(gè)環(huán)節(jié)。在這個(gè)過程中,Verilog被用來描述數(shù)字電路的行為和結(jié)構(gòu),進(jìn)而實(shí)現(xiàn)ASIC的設(shè)計(jì)。 具體來說
    的頭像 發(fā)表于 12-17 09:52 ?114次閱讀

    Verilog 測(cè)試平臺(tái)設(shè)計(jì)方法 Verilog FPGA開發(fā)指南

    Verilog測(cè)試平臺(tái)設(shè)計(jì)方法是Verilog FPGA開發(fā)中的重要環(huán)節(jié),它用于驗(yàn)證Verilog設(shè)計(jì)的正確性和性能。以下是一個(gè)詳細(xì)的Verilog測(cè)試平臺(tái)設(shè)計(jì)方法及
    的頭像 發(fā)表于 12-17 09:50 ?206次閱讀

    FIFO Generator的Xilinx官方手冊(cè)

    如下: 類型 FIFO的類型區(qū)分主要根據(jù)FIFO實(shí)現(xiàn)時(shí)利用的是芯片中的哪些資源,其分類主要有以下四種: shift register FIFO:通過寄存器來
    的頭像 發(fā)表于 11-12 10:46 ?411次閱讀
    <b class='flag-5'>FIFO</b> Generator的Xilinx官方手冊(cè)

    Verilog HDL的基礎(chǔ)知識(shí)

    本文繼續(xù)介紹Verilog HDL基礎(chǔ)知識(shí),重點(diǎn)介紹賦值語句、阻塞與非阻塞、循環(huán)語句、同步與異步、函數(shù)與任務(wù)語法知識(shí)。
    的頭像 發(fā)表于 10-24 15:00 ?398次閱讀
    <b class='flag-5'>Verilog</b> HDL的基礎(chǔ)知識(shí)

    分享一個(gè)嵌入式通用FIFO環(huán)形緩沖區(qū)實(shí)現(xiàn)

    開源項(xiàng)目ringbuff ,是一款通用FIFO環(huán)形緩沖區(qū)實(shí)現(xiàn)的開源庫,作者M(jìn)aJerle,遵循 MIT 開源許可協(xié)議。
    的頭像 發(fā)表于 10-23 16:20 ?415次閱讀
    分享一個(gè)嵌入式通用<b class='flag-5'>FIFO</b>環(huán)形緩沖區(qū)<b class='flag-5'>實(shí)現(xiàn)</b>庫

    如何使用FX3同步從屬fifo模式通過FPGA傳輸傳感器數(shù)據(jù)?

    我們正試圖使用 FX3 同步從屬 fifo 模式通過 FPGA 傳輸傳感器數(shù)據(jù)。 USB type-C 接口需要選擇一個(gè)多路復(fù)用器來決定使用哪一邊的 USB。 因此,我們考慮使用 FX3 GPIO
    發(fā)表于 07-17 08:04

    使用FX3同步fifo兩地址線能夠配置成四線程模式嗎?

    使用FX3同步fifo兩地址線能夠配置成四線程模式嗎,也就是兩個(gè)端點(diǎn)輸出,兩個(gè)端點(diǎn)輸入,麻煩大佬回復(fù)一下???
    發(fā)表于 07-02 07:45

    如何配置CYUSB3014固件,實(shí)現(xiàn)五根地址線同步fifo數(shù)據(jù)傳輸,同時(shí)配制出多個(gè)端點(diǎn)?

    如何配置CYUSB3014固件,實(shí)現(xiàn)五根地址線同步fifo數(shù)據(jù)傳輸,同時(shí)配制出多個(gè)端點(diǎn)
    發(fā)表于 06-21 09:23

    同步FIFO和異步FIFO區(qū)別介紹

    1. FIFO簡(jiǎn)介 FIFO是一種先進(jìn)先出數(shù)據(jù)緩存器,它與普通存儲(chǔ)器的區(qū)別是沒有外部讀寫地址線,使用起來非常簡(jiǎn)單,缺點(diǎn)是只能順序讀寫,而不能隨機(jī)讀寫。 2. 使用場(chǎng)景 數(shù)據(jù)緩沖:也就是數(shù)據(jù)寫入過快
    的頭像 發(fā)表于 06-04 14:27 ?1622次閱讀
    <b class='flag-5'>同步</b><b class='flag-5'>FIFO</b>和異步<b class='flag-5'>FIFO</b>區(qū)別介紹

    FPGA能否正確接收來自FX3同步從站FIFO的數(shù)據(jù)?

    低電平,則不對(duì)數(shù)據(jù)總線進(jìn)行采樣。 6. t6 時(shí),F(xiàn)PGA 用新地址更新地址總線,依此類推; 在此過程之后,F(xiàn)PGA 能否正確接收來自 FX3 同步從站 FIFO 的數(shù)據(jù)? 非常感謝!
    發(fā)表于 05-31 08:09

    關(guān)于FX3同步Slave FIFO非突發(fā)傳輸?shù)囊蓡柷蠼?/a>

    在FX3同步Slave FIFO的非突發(fā)傳輸中,F(xiàn)PGA在將SLRD拉低后,等兩個(gè)時(shí)鐘周期,然后采樣數(shù)據(jù)總線,采樣數(shù)據(jù)總線前要判斷對(duì)應(yīng)地址的FLAG是否為高,只有為高才采樣數(shù)據(jù)總線,請(qǐng)問是這樣
    發(fā)表于 05-31 06:28

    求助,求大神幫忙解答下AN65974同步Slave FIFO的讀時(shí)序

    你好,在AN65974文檔中,我看不懂同步Slave FIFO的讀時(shí)序,你可以給我解讀一下么? 下圖中有我標(biāo)注的我不懂的問題。非常感謝你!......
    發(fā)表于 05-31 06:27

    關(guān)于同步FIFO和異步FIFO的基礎(chǔ)知識(shí)總結(jié)

    FIFO是一種先進(jìn)先出數(shù)據(jù)緩存器,它與普通存儲(chǔ)器的區(qū)別是沒有外部讀寫地址線,使用起來非常簡(jiǎn)單,缺點(diǎn)是只能順序讀寫,而不能隨機(jī)讀寫。
    的頭像 發(fā)表于 04-09 14:23 ?3281次閱讀
    關(guān)于<b class='flag-5'>同步</b><b class='flag-5'>FIFO</b>和異步<b class='flag-5'>FIFO</b>的基礎(chǔ)知識(shí)總結(jié)

    verilog同步和異步的區(qū)別 verilog阻塞賦值和非阻塞賦值的區(qū)別

    Verilog是一種硬件描述語言,用于設(shè)計(jì)和模擬數(shù)字電路。在Verilog中,同步和異步是用來描述數(shù)據(jù)傳輸和信號(hào)處理的兩種不同方式,而阻塞賦值和非阻塞賦值是兩種不同的賦值方式。本文將詳細(xì)解釋
    的頭像 發(fā)表于 02-22 15:33 ?1734次閱讀