0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于格密碼全同態(tài)加密的數(shù)學(xué)基礎(chǔ)

Linux閱碼場(chǎng) ? 來源:Linux閱碼場(chǎng) ? 作者:甄建勇 ? 2022-10-31 09:16 ? 次閱讀

--基于格密碼全同態(tài)加密的數(shù)學(xué)基礎(chǔ)

此情此景,我想先吟詩二首:

8e0105cc-58b1-11ed-a3b6-dac502259ad0.png

從文學(xué)的角度看,以上兩首詩比李白寫的稍微遜色一點(diǎn),不過,從數(shù)學(xué)角度來看,簡(jiǎn)直可以獲得諾貝爾數(shù)學(xué)領(lǐng)域的文學(xué)獎(jiǎng)(可惜了,目前還沒有這個(gè)獎(jiǎng)項(xiàng))。

以上是定場(chǎng)詩,本文旨在盡量少用數(shù)學(xué)公式的情況下,解釋清楚FHE(Fully Homomorphic Encryption,全同態(tài)加密)相關(guān)的數(shù)學(xué)基礎(chǔ)。話不多說,我們繼續(xù)。

一點(diǎn)定乾坤

當(dāng)時(shí)的故事是這樣的:

一個(gè)陽光明媚的下午,初三(一)班剛剛上完第二節(jié)數(shù)學(xué)課,老師講的是函數(shù)相關(guān)的內(nèi)容。陽光灑在我課桌上,溫暖的光線散射到眼睛里,而我卻盯著老師講的拋物線函數(shù)圖像,一動(dòng)也不動(dòng)。

當(dāng)時(shí)我本子上的圖像是下面這樣的:

8e0c5cce-58b1-11ed-a3b6-dac502259ad0.png

發(fā)呆的時(shí)候,我們班里的泰勒同學(xué)去完廁所從教室前門走了進(jìn)來,我的座位正沖門口,可能是他發(fā)現(xiàn)了我在發(fā)呆,就徑直走了過來,跟我說:

“干嘛呢?大白天的,發(fā)什么呆?。俊?/p>

“發(fā)呆跟白天晚上有關(guān)系嗎?”我應(yīng)道,“別打擾我,我在思考一個(gè)深?yuàn)W的問題!”

“什么問題?。縿e思考了,我跟你說個(gè)事兒,我會(huì)魔法你知道嗎?”泰勒不僅沒走開,反而挨著我坐了下來。

“別扯了,我們又不是幼兒園的小朋友,都初三了,誰還相信魔法?!”我有點(diǎn)不耐煩,打算繼續(xù)思考我的深?yuàn)W的問題。

“你別不信啊,我眼睛有透視的能力”泰勒有點(diǎn)不依不饒,繼續(xù)說道:

“不信的話,你把你的草稿本合起來,別讓我看到,我可以在不看你本子的前提下,知道你畫的是什么函數(shù)”

“滾一邊兒去,我沒那閑工夫跟你玩兒”因?yàn)樘├沾驍辔业乃悸?,想趕緊轟他走。

“實(shí)在不信的話,我們?cè)囋嚥痪椭懒藛??!”泰勒不僅沒走,還挪了一下凳子,離我更近了。

“好吧,好吧,如果不靈的話,有多遠(yuǎn)滾多遠(yuǎn),行不行?”我說。

“沒問題,這樣,你把你的函數(shù)圖像用兩本書遮起來,兩書之間只留一個(gè)點(diǎn),我可以根據(jù)這一個(gè)點(diǎn)的信息得到整幅函數(shù)圖像!”泰勒顯得有點(diǎn)興奮。我自已也有點(diǎn)躍躍欲試。

“行啊,沒問題,就給你留一個(gè)點(diǎn),看你怎么猜!”我心想,別說一個(gè)點(diǎn),就是給你十個(gè)點(diǎn),你能猜出來的話,我也算你贏。

我邊說邊把草稿本打開,用語文書和英語書遮住,中間只留了一個(gè)小縫兒,我自己剛剛能看到橫軸上‘1’對(duì)應(yīng)的那一點(diǎn)點(diǎn)圖像。

“行了,我準(zhǔn)備好了,猜吧!”我說。

“好,現(xiàn)在正式開始,不過我要先問你幾個(gè)問題”泰勒說。

“問吧,問吧!”我說。

“請(qǐng)問,在這個(gè)點(diǎn),這個(gè)函數(shù)的一階導(dǎo)數(shù)是多少?”泰勒正式開始了他莫名其妙的發(fā)問。

“一階導(dǎo)數(shù)?是2”我略作思考,回答道。

“二階導(dǎo)數(shù)呢?”泰勒繼續(xù)問。

“還是2”我腦筋微轉(zhuǎn),答道。

“三階導(dǎo)數(shù)呢?”泰勒繼續(xù)問。

“三階導(dǎo)數(shù)???是0”我快速說道。

“四階導(dǎo)數(shù)呢?”泰勒還要問,沒有停下來的意思。

“哎呀,你煩不煩,三階導(dǎo)數(shù)后面所有的導(dǎo)數(shù)都是0”我說。

這時(shí),只見泰勒嘴角上揚(yáng),微微一笑,說:“你畫的函數(shù)是8e40e37c-58b1-11ed-a3b6-dac502259ad0.png,對(duì)不對(duì)?。?!”

“這怎么可能?!”我很是驚訝,僅僅通過一個(gè)點(diǎn)的信息,泰勒怎么會(huì)知道整幅函數(shù)圖像的呢?

只見泰勒那時(shí)的表情,得意洋洋,心滿意足,開始手舞足蹈。。。

我還是不信,懷疑剛才泰勒偷看到了我的草稿本兒。所以我又緊接著測(cè)試了8e51dd58-58b1-11ed-a3b6-dac502259ad0.png,甚至還測(cè)試了8e5f014a-58b1-11ed-a3b6-dac502259ad0.png,還有很多其它很復(fù)雜的函數(shù),令人震驚的是,這些函數(shù),無一例外,泰勒都只通過一個(gè)點(diǎn)就猜出來了。

“怎么樣?這回相信我會(huì)魔法了吧?!”泰勒見我不解,輕飄飄撂下這句話就走開了,只留下凌亂的我,張著嘴巴,一臉懵。。。

“還真是啊,‘一點(diǎn)定乾坤’,難道說的就是這個(gè)?”我不禁自言自語。

讀到這里,聰明的同學(xué)可能早就可以拆穿泰勒所謂的魔法了,不過我實(shí)在是愚鈍,我們繼續(xù)往下看。。。

一時(shí)含永遠(yuǎn)

泰勒同學(xué)前腳剛走,我的另外一個(gè)叫傅里葉的同學(xué)就跑了過來,他好像是看到了我和泰勒玩的游戲,跟我說:

“泰勒那哪叫魔法啊,我會(huì)的才是真正的魔法,我可以讓時(shí)間停止,讓瞬間變永恒”

“你跟泰勒一個(gè)德性,凈扯玄乎兒的,把我當(dāng)幼兒園小朋友?!蔽疫€在琢磨剛剛泰勒是怎么做到的。

“你不相信的話,我們也做個(gè)游戲試試”傅里葉不想放棄展示他的魔法。

“沒問題,直接開始吧,你說怎么玩?”我說。

“好,我的第一個(gè)問題是,當(dāng)8e6e7800-58b1-11ed-a3b6-dac502259ad0.png的時(shí)候,函數(shù)的值是多少?”見我同意玩,傅里葉也是開門見山,一下子問出了第一個(gè)問題,其實(shí),也是唯一的一個(gè)問題。

我奮筆疾書,畢竟x是個(gè)e指數(shù),還包含三角函數(shù)的角度,但是,我真正計(jì)算才發(fā)現(xiàn),根本用不到筆算,口算就可以。我都一一回答了。當(dāng)然,在這過程中,我把本子捂得很緊,沒敢讓他偷看一眼。

“我知道了,你的函數(shù)是8e8078fc-58b1-11ed-a3b6-dac502259ad0.png,對(duì)不對(duì)??!”傅里葉得意的問。

“我K,你是怎么知道的?!,難道傳說中的‘一時(shí)含永遠(yuǎn)’,說的就是你?!”我被徹底震驚了。

。。。

。。。

。。。

好吧,我承認(rèn),泰勒和傅里葉不是我的同學(xué),上面的故事都是編的。我也是實(shí)在編不下去了,很多聰明的同學(xué)也早就發(fā)現(xiàn)了泰勒和傅里葉的秘密。

泰勒的秘密就是:

對(duì)于任何一個(gè)光滑函數(shù),都可以表示為多項(xiàng)式的形式,而多項(xiàng)式的系數(shù)可以通過某一點(diǎn)的導(dǎo)數(shù)獲得。

是的,你沒看錯(cuò),一個(gè)點(diǎn)竟然蘊(yùn)含了一個(gè)函數(shù)的所有信息。

傅里葉的秘密是:

對(duì)于任何一個(gè)光滑函數(shù),都可以表示為三角函數(shù)累加(積分)的形式,而每一項(xiàng)的系數(shù)可以通過多個(gè)點(diǎn)的自變量和因變量對(duì)兒(x, f(x))獲得。

是的,你沒看錯(cuò),我們手機(jī)里的歌曲,不管你播不播放,他總是呆在那里,不曾改變。一個(gè)隨時(shí)間變化的信號(hào),經(jīng)過傅里葉變換之后,時(shí)間將消失,音樂會(huì)上一段美妙的音樂,不過是樂譜的再一次重復(fù),而無論重復(fù)多少次,樂譜從未發(fā)生絲毫改變。

以上被稱為“感覺第一定理”。

對(duì)于喜歡看公式的同學(xué)(對(duì)于不喜歡看數(shù)學(xué)公式的同學(xué),直接跳過公式部分,絲毫不用擔(dān)心會(huì)影響你對(duì)本文的理解),就是:

泰勒公式一句話描述:就是用多項(xiàng)式函數(shù)去逼近光滑函數(shù)。

8e982682-58b1-11ed-a3b6-dac502259ad0.png

傅里葉變換一句話描述:將用一般多項(xiàng)式表示的時(shí)域的信號(hào),變成頻域的信號(hào)(這句不懂沒關(guān)系,看完后面就懂了)。

8ea4d486-58b1-11ed-a3b6-dac502259ad0.png

你在其它地方看到的傅里葉變換可能是下面的樣子:

8eafce68-58b1-11ed-a3b6-dac502259ad0.png

那是因?yàn)闅W拉這位同學(xué)的存在,可以把e指數(shù)變成三角函數(shù)的形式。

歐拉公式:

8ebf3718-58b1-11ed-a3b6-dac502259ad0.png

所以,我總結(jié)下來,就是,對(duì)于任何一個(gè)函數(shù),都可以用一些簡(jiǎn)單的東西的線性組合得到。這里面提到的簡(jiǎn)單的東西,就可以認(rèn)為是搭積木的一個(gè)個(gè)小積木塊,用數(shù)學(xué)的語言,小積木塊就是函數(shù)的基。用線性代數(shù)的語言,小積木塊就是單位向量。而具體的函數(shù),就是用小積木塊搭出來的各種形狀的積木,以及用單位向量組成的一般向量。

以上被稱為“感覺定理-2”

彎路走的快

稍作休息,我又可以繼續(xù)編故事了,還是續(xù)集。

傅里葉同學(xué)說完答案,同樣留下一頭霧水的我,瀟灑的走開了。當(dāng)時(shí),我腦袋里真是一團(tuán)漿糊,泰勒同學(xué)的秘密還沒搞懂,又來一個(gè)傅里葉的秘密。秘密加秘密,我就更摸不著頭腦了。

正當(dāng)我一籌莫展之際,我的第三位同學(xué)-凱萊出現(xiàn)在了我的面前。還沒等我張口請(qǐng)教,凱萊就發(fā)話了:

“泰勒和傅里葉的三腳貓功夫,有啥了不起的,在我看來,不就是多項(xiàng)式的兩種表示形式而已。”

“多項(xiàng)式,我知道,不過,我只知道一種形式,另外一種是啥?”我問。

凱萊,不像泰勒和傅里葉,他舉止優(yōu)雅,陣腳不亂,簡(jiǎn)稱“矩陣”(sorry,這是個(gè)諧音梗)。

“不用著急,聽我給你慢慢說”凱萊搬了自己的凳子來,輕坐在我旁邊。

你看啊,我們一般見到的多項(xiàng)式是下面這樣的,叫多項(xiàng)式的系數(shù)表示法。

8ed00de0-58b1-11ed-a3b6-dac502259ad0.png

這其中的8ede88b6-58b1-11ed-a3b6-dac502259ad0.png就是多項(xiàng)式的系數(shù),所以叫“系數(shù)(coefficient)表示法”,沒錯(cuò),數(shù)學(xué)就是這么直白。

除了系數(shù)表示法之外,還有一種,叫“點(diǎn)值表示法(point-value representation)”,顧名思義,就是用這個(gè)多項(xiàng)式上的點(diǎn),以及這點(diǎn)對(duì)應(yīng)的值來表示。

比如,上面的多項(xiàng)式,用點(diǎn)值表示法,就是:

8eee7e88-58b1-11ed-a3b6-dac502259ad0.png

看到這里,我就有點(diǎn)不太理解了,為啥點(diǎn)值表示法也能代表這個(gè)多項(xiàng)式呢?凱萊,不緊不慢,耐心解釋道:

你看啊,點(diǎn)值表示法里面的每一對(duì)點(diǎn)值,是不是表示下面一個(gè)等式,比如,第一對(duì)兒點(diǎn)值,表示的就是下面的一個(gè)等式。

8efc64bc-58b1-11ed-a3b6-dac502259ad0.png

第二對(duì)兒點(diǎn)值對(duì)應(yīng)的是下面的等式:

8f08fce0-58b1-11ed-a3b6-dac502259ad0.png

從點(diǎn)值表示法來看,本來在一個(gè)平面上有無數(shù)條曲線,每次確定一個(gè)點(diǎn),就要求我們想要的曲線必須經(jīng)過這個(gè)點(diǎn),當(dāng)我們確定的點(diǎn)的數(shù)量和這條曲線的次數(shù)(就是上面式子中的n)相同時(shí),我們就找到了經(jīng)過我們指定所有點(diǎn)的唯一一條曲線。這是“感覺定理-3”

這時(shí),凱萊好像看出了我的心思,說:

“瞎想什么啊,太難理解了,我們初中生,剛學(xué)過矩陣,用矩陣表示比你那個(gè)‘真感情’容易多了!”

“什么意思?。俊蔽疫€是不太理解。

“你看啊。。。”凱萊又開始娓娓道來:

上面用點(diǎn)值表示法表示的多項(xiàng)式,每個(gè)點(diǎn)值對(duì)兒都對(duì)應(yīng)一個(gè)方程,如果我們把他們組合到一起,寫成矩陣的形式,不就是下面這個(gè)樣子嗎:

8f12ad08-58b1-11ed-a3b6-dac502259ad0.png


點(diǎn)值表示法,就是上面三個(gè)矩陣,第1個(gè)和第3個(gè),分別表示“點(diǎn)”和“值”,第2個(gè)矩陣是多項(xiàng)式的系數(shù)。當(dāng)其中第1個(gè)和第3個(gè)矩陣都確定的情況下,第2個(gè)系數(shù)矩陣其實(shí)也就確定了。所以,從這個(gè)角度看,點(diǎn)值表示法和系數(shù)表示法,只是同一個(gè)函數(shù)的兩種表示方式,就好像同一個(gè)函數(shù)既可以按泰勒同學(xué)的方式展開,也可以按傅里葉同學(xué)的方式展開,兩種方式描述的其實(shí)是一個(gè)東西。

就好像光的波粒二象性似的,泰勒同學(xué)強(qiáng)調(diào)的是粒子性,而傅里葉同學(xué)強(qiáng)調(diào)的是波動(dòng)性。或者說,系數(shù)表示法強(qiáng)調(diào)的是函數(shù)的波動(dòng)性,點(diǎn)值表示法更多體現(xiàn)函數(shù)的粒子性。
此為“感覺定理-4”.

凱萊同學(xué)啰啰嗦嗦的說了半天,我也不知道說了些什么東西,就問:

“凱萊,你說的點(diǎn)值法,我是聽懂了,可我沒看出點(diǎn)值法有啥用處啊”

“這個(gè)用處可就太大了,可以加速多項(xiàng)式乘法!”凱萊說。

你看啊,比如,我們有兩個(gè)用系數(shù)表示法表示的多項(xiàng)式:

8f2a93f0-58b1-11ed-a3b6-dac502259ad0.png

那么這兩個(gè)多項(xiàng)式的乘法結(jié)果8f39dd74-58b1-11ed-a3b6-dac502259ad0.png的計(jì)算過程如下所示:

8f4cd294-58b1-11ed-a3b6-dac502259ad0.png

這個(gè)多項(xiàng)式乘法的復(fù)雜度是8f5ad5e2-58b1-11ed-a3b6-dac502259ad0.png,另外還要注意的是,“多項(xiàng)式乘法”中的“乘法”兩個(gè)字非常容易產(chǎn)生誤導(dǎo)作用,給人一種真的是普通乘法的錯(cuò)覺,其實(shí),多項(xiàng)式的乘法操作,實(shí)際上就是卷積運(yùn)算,這一點(diǎn)一定要謹(jǐn)記。

“卷積?有什么特殊的呢?這和點(diǎn)值表示法有啥關(guān)系???”我還是似懂非懂的問。

“別著急啊,還記得剛剛走的傅里葉同學(xué)嗎?他剛剛使用的秘密武器就是傅里葉變換,還記得嗎?”凱萊問我。

“當(dāng)然記得,傅里葉變換可以讓時(shí)間消失的,太厲害了,可以將時(shí)域的信號(hào),變成頻域的信號(hào)!”我說。

“完全正確!”凱萊對(duì)我的回答非常滿意,他接著說:

“多項(xiàng)式的乘法(也就是卷積運(yùn)算),可以先將兩個(gè)多項(xiàng)式分別做傅里葉變換,變完之后的兩個(gè)式子,直接對(duì)應(yīng)項(xiàng)相乘,對(duì)應(yīng)項(xiàng)相乘完之后的結(jié)果再做傅里葉逆變換,得到的結(jié)果就是兩個(gè)原始多項(xiàng)式的乘法結(jié)果!??!”凱萊興奮的嚷道。

“這個(gè)我知道,這不就是卷積定理嘛!卷積定理說的是,在一個(gè)域的相乘等于另一個(gè)域的卷積,用式子表示,就是下面這樣子的”我補(bǔ)充道。

8f6b63ee-58b1-11ed-a3b6-dac502259ad0.png

“可是,這個(gè)和你前面提到的矩陣有什么關(guān)系?。?!又和多項(xiàng)式的點(diǎn)值表示法有什么關(guān)系?。?!”我還是沒完全理解凱萊的意思。

“不用著急,這兩個(gè)問題很快你就明白了,只需最后一步!”凱萊還是慢條斯理的樣子。

“最后一步?什么最后一步啊?”我問。

你看啊,其實(shí)啊,點(diǎn)值表示法有個(gè)非常大的好處,我之前沒提到,就是:

對(duì)于用點(diǎn)值表示法表示的兩個(gè)多項(xiàng)式的乘法(實(shí)際是卷積),可以直接對(duì)應(yīng)項(xiàng)相乘即可,即,

8f7d9d52-58b1-11ed-a3b6-dac502259ad0.png

“我知道了,凱萊,原來復(fù)雜度為8f904c86-58b1-11ed-a3b6-dac502259ad0.png的多項(xiàng)式乘法運(yùn)算,復(fù)雜度降低成8f9fa5be-58b1-11ed-a3b6-dac502259ad0.png了”我好像發(fā)現(xiàn)了什么新大陸,也吼了起來。

“不對(duì)啊,好像哪里不對(duì)啊,這個(gè)復(fù)雜度的降低要想實(shí)現(xiàn),需要先把系數(shù)表示法變成點(diǎn)值表示法才行啊!,這個(gè)從系數(shù)轉(zhuǎn)點(diǎn)值的復(fù)雜度也是啊,你這搞半天不是瞎搞了嗎!本來可以有直行的路可以到達(dá),你這越走越遠(yuǎn)??!”我剛剛發(fā)現(xiàn)的新大陸瞬間又不香了,滿臉狐疑的看著凱萊。

“不對(duì)啊,好像哪里不對(duì)啊,這個(gè)復(fù)雜度的降低要想實(shí)現(xiàn),需要先把系數(shù)表示法變成點(diǎn)值表示法才行啊!,這個(gè)從系數(shù)轉(zhuǎn)點(diǎn)值的復(fù)雜度也是8f904c86-58b1-11ed-a3b6-dac502259ad0.png啊,你這搞半天不是瞎搞了嗎!本來可以有直行的路可以到達(dá),你這越走越遠(yuǎn)啊!”我剛剛發(fā)現(xiàn)的新大陸瞬間又不香了,滿臉狐疑的看著凱萊。

“你別著急啊,你再仔細(xì)看看,你說的沒錯(cuò),如果是一般的系數(shù)變點(diǎn)值,復(fù)雜度確實(shí)降不下來,可是,如果我取得點(diǎn)是一些特殊的點(diǎn)的話,情況就完全不一樣啦”凱萊繼續(xù)給我解釋,不緊不慢。
“取什么樣的點(diǎn),才能降低復(fù)雜度呢?哦!我知道了,復(fù)數(shù)域的單位根,復(fù)數(shù)域的單位根,復(fù)數(shù)域的單位根!”我連續(xù)說了三遍,生怕凱萊聽不清楚。
在復(fù)數(shù)域內(nèi),方程有個(gè)根,就叫單位根,這些根分別是:

8fb2e476-58b1-11ed-a3b6-dac502259ad0.png

就是前面傅里葉同學(xué)表演“一時(shí)含永遠(yuǎn)”魔法的時(shí)候用的那幾個(gè)點(diǎn)?。∵@幾個(gè)點(diǎn)太好了,口算就能知道對(duì)應(yīng)的函數(shù)值,這樣的話,系數(shù)到點(diǎn)值的轉(zhuǎn)換就簡(jiǎn)單多了。
“是的,你終于發(fā)現(xiàn)了傅里葉變換的另外一個(gè)秘密,就是傅里葉變換,其實(shí)就是多項(xiàng)式的系數(shù)轉(zhuǎn)點(diǎn)值,當(dāng)然,我們考慮的是離散的傅里葉變換(DFT)”凱萊繼續(xù)說道。
“嗯,后面我就知道了,DFT有個(gè)快速算法,叫FFT,F(xiàn)FT的計(jì)算復(fù)雜度是8fbf2bd2-58b1-11ed-a3b6-dac502259ad0.png看到了希望,我又開心了起來。

為了防止忘記,我在心里又重新梳理了一下多項(xiàng)式乘法的過程:

多項(xiàng)式乘法本質(zhì)是卷積運(yùn)算

卷積運(yùn)算可以分三步:

a. 先把兩個(gè)多項(xiàng)式從系數(shù)表示變成點(diǎn)值表示,這一步就是DFT,可以用FFT加速,F(xiàn)FT采用分治法,可以將一根很長(zhǎng)的木棍兒每次都折半,這樣遞歸下去,就可以降低計(jì)算復(fù)雜度。FFT選用的是單位根,NTT選用的是原根,目的一樣,為了加速DFT, 相比于FFT,NTT還便于取模運(yùn)算。

b. 然后,將用點(diǎn)值形式的兩個(gè)多項(xiàng)式,對(duì)應(yīng)項(xiàng)相乘,就得到了最終結(jié)果的點(diǎn)值表示形式。

c. 最后,還需要把最終結(jié)果的點(diǎn)值表示變回系數(shù)表示

“前幾步上面都提到了,我也理解了,可這最后一步是怎么做到了?”雖然大部分的內(nèi)容我理解了,可再三回憶,最后一步確實(shí)沒聽凱萊說過。

“哎呀,這還不簡(jiǎn)單嗎?提示你一下,看看多項(xiàng)式的矩陣表示形式,對(duì)了,不用往上翻了,我們?cè)賹懸槐?,就是下面的樣子”凱萊嘿嘿一笑:

8fd3eeaa-58b1-11ed-a3b6-dac502259ad0.png

還是原來的配方,還是熟悉的味道。點(diǎn)值表示變回系數(shù)表示的過程,不就是已知上面的第1個(gè)矩陣和第3個(gè)矩陣,求中間的系數(shù)矩陣嘛?!

“原理我貌似有點(diǎn)懂了,可是,具體怎么求啊,我線性代數(shù)也學(xué)的不好”我繼續(xù)追問凱萊,凱萊畢竟是矩陣?yán)碚摰拇髱熂?jí)人物,這點(diǎn)小問題應(yīng)該難不倒他。果然,還不到1秒鐘的時(shí)間,凱萊就發(fā)話了:

“這個(gè)問題嘛,等式兩邊都乘上第1個(gè)矩陣的逆矩陣就可以了,注意啊,是“矩陣的逆:”,不是”矩陣的轉(zhuǎn)置:”,這個(gè)千萬別混淆了”凱萊細(xì)心的提醒我。
“知道啦,不過,矩陣的逆,復(fù)雜度可很大啊,是8fe15504-58b1-11ed-a3b6-dac502259ad0.png,你這又是南轅北轍?。?!”我又有被凱萊耍了的感覺。

“你說的沒錯(cuò),上面的第一個(gè)矩陣,是一個(gè)特殊的矩陣,叫范德蒙矩陣,一般的范德蒙矩陣的逆,運(yùn)算復(fù)雜度也是8fe15504-58b1-11ed-a3b6-dac502259ad0.png,不過,但是,如果我們按照傅里葉同學(xué)的思路,搞出來的這個(gè)范德蒙矩陣是特殊中的特殊,它的逆矩陣,就是矩陣中的每個(gè)元素的共軛,再除以n,就是這么簡(jiǎn)單,哎喲,就是這么巧合,你說神奇不神奇”凱萊難得的大笑起來。用式子表示,就是下面這個(gè)樣子的:

8ffefd84-58b1-11ed-a3b6-dac502259ad0.png

這個(gè)矩陣的逆,就是:

900910bc-58b1-11ed-a3b6-dac502259ad0.png

“原來如此,原來如此啊,如果我記得沒錯(cuò)的話,點(diǎn)值到系數(shù)的變換過程就是傳說中的傅里葉逆變換,也叫IDFT,這個(gè)也有加速版本的IFFT?!蔽医K于恍然大悟,“彎路走的快”,誠(chéng)不欺我,有圖為證。

901e3c80-58b1-11ed-a3b6-dac502259ad0.png

故事講到這里,我不禁又想起了最開始的兩首詩,史上最富含數(shù)學(xué)知識(shí)的文學(xué)作品,名副其實(shí)。不過,看標(biāo)題,內(nèi)容是同態(tài)加密啊,故事都講到這兒了,嘚啵嘚啵嘮半天嗑,咋同態(tài)加密的影兒都沒看著?。?!
別著急,這是同態(tài)加密的上篇,我們稍作休息,請(qǐng)等待后面的精彩故事。

此情此景,我想再吟詩二首:

9036a0ae-58b1-11ed-a3b6-dac502259ad0.png

話說上篇我們了解到了很多非常重要的內(nèi)容:

多項(xiàng)式從系數(shù)表示變成點(diǎn)值表示的過程,就是離散傅里葉變換(DFT/FFT)。

多項(xiàng)式從點(diǎn)值表示變成系數(shù)表示的過程,就是離散傅里葉逆變換(IDFT/IFFT)。

多項(xiàng)式的乘法,本質(zhì)是卷積運(yùn)算,一次卷積運(yùn)算可以分為三步:Convolution=FFT->multiply->IFFT,即卷積定理表達(dá)的內(nèi)容。

以上三種場(chǎng)景,都有相應(yīng)的矩陣操作與之對(duì)應(yīng)。原因是:一個(gè)多項(xiàng)式的點(diǎn)值表示和一個(gè)線性方程組對(duì)應(yīng),線性方程組又和一個(gè)矩陣乘法運(yùn)算對(duì)應(yīng),這樣多項(xiàng)式的乘法就可以轉(zhuǎn)換成FFT相關(guān)的計(jì)算。這一點(diǎn)非常重要,是理解FHE的關(guān)鍵所在。
仔細(xì)思考上篇中討論的內(nèi)容,加上上面幾點(diǎn)提示,這樣我們就把FHE相關(guān)的幾個(gè)非常重要的概念,以及這些概念之間的關(guān)系就搞清楚了,此時(shí),我們的腦海里應(yīng)該出現(xiàn)以下幾個(gè)概念,并且這些概念不再是獨(dú)立的孤島,而是腦海里一片廣闊的大陸:泰勒公式,多項(xiàng)式,系數(shù)表示法,點(diǎn)值表示法,DFT,F(xiàn)FT,卷積,卷積定理,線性方程組,矩陣,矩陣的逆。

好,收拾行囊,我們繼續(xù)趕路,在正式向FHE山頂發(fā)起沖鋒前,我們有必要加深一下對(duì)傅里葉變換的理解,如下圖所示:

9076f7c6-58b1-11ed-a3b6-dac502259ad0.png


仔細(xì)查看上圖。。。在觀察這段時(shí)間里的某個(gè)時(shí)刻,一道金光從腦海劃過:為什么時(shí)間消失了?!我們感知到的隨著時(shí)間流淌的宇宙,進(jìn)行傅里葉變換后會(huì)怎樣?我們又該怎么選擇傅里葉變換的旋轉(zhuǎn)因子(twiddle factor)?如果你的腦海沒有金光劃過,可以先閱讀一下。

如果腦海里實(shí)在是沒有金光劃過,也沒關(guān)系,不會(huì)影響我們最終站上FHE的山頂。我們繼續(xù)。。。

在FHE領(lǐng)域,我們可能會(huì)反復(fù)看到一句話:“FHE是基于格密碼學(xué)的”。這句話很簡(jiǎn)短,既然反復(fù)看到,說明應(yīng)該很重要,可是,我從這句話里面又看不出什么東西,每個(gè)字我都認(rèn)識(shí),但就是不知道整句話什么意思。什么道理都懂,仍然過不好一生。不用著急,我們慢慢拆解

首先,這里面最難懂的可能是“格”這個(gè)字,于是,我們就百度里一下,“格”是這么定義的:

“ “格”是一種特殊的偏序集。”

也很簡(jiǎn)短,不過不出意外,還是每個(gè)字都認(rèn)識(shí),但仍然不明白整句話說的是啥意思。按道理,既然名字叫“格”,應(yīng)該跟“格子”有關(guān)系???!

于是,我們繼續(xù)查找FHE相關(guān)的資料,除了“格”這個(gè)東西,經(jīng)常出現(xiàn)的還有“環(huán)”這個(gè)概念,于是百度之,“環(huán)”定義的第一個(gè)條件是:

“ 集合R在+運(yùn)算下構(gòu)成阿貝爾群” 此外還有“理想(Ideal)”兩個(gè)字也出現(xiàn)在了附近。

也很簡(jiǎn)短,不過不出意外,還是每個(gè)字都認(rèn)識(shí),但仍然不明白整句話說的是啥意思。按道理,既然名字叫“環(huán)”,應(yīng)該跟“鐵環(huán)、手環(huán)”之類的東西有關(guān)???!

按圖索驥,從“環(huán)”的定義里,我們發(fā)現(xiàn)了“阿貝爾群”這幾個(gè)字,“阿貝爾”應(yīng)該是個(gè)人名,那“群”又是啥意思?!,于是,繼續(xù)百度之,

“在數(shù)學(xué)中,群表示一個(gè)擁有滿足封閉性、滿足結(jié)合律、有單位元、有逆元的二元運(yùn)算的代數(shù)結(jié)構(gòu),包括阿貝爾群、同態(tài)和共軛類?!?br />
這句話相比之前“格”“環(huán)”的定義稍稍多了幾個(gè)字。欣喜的是,這句話中提到的幾個(gè)概念好像都知道什么意思,比如“結(jié)合律”,“單位元”,“共軛”等,此外,還見到了我們苦苦追尋的“同態(tài)”兩個(gè)字,相比最開始的漆黑一片,終于見到了幾個(gè)火星兒,希望有了,勝利可能就在眼前。。。

于是,我們沖向FHE這個(gè)山頂?shù)牡谝粭l路徑就出現(xiàn)在了我們眼前,那便是:群->環(huán)->域->格。雖然只有四個(gè)字,可每個(gè)字看起來都不是那么好搞定的,畢竟,我們好像依稀聽說過,“群論”,“環(huán)論”,“抽象代數(shù)”這幾個(gè)可怕的怪物,這么陡峭的山體,一不小心就可能摔得粉身碎骨,永遠(yuǎn)達(dá)不到矗立在山頂?shù)腇HE。

我駐足沉思,難道到山頂只有一條路可走?難道必須從山腳下的“群”開始?現(xiàn)在都是新時(shí)代,出門爬個(gè)山,累了都有纜車啊, FHE這座山真有沒有纜車可坐?如果FHE這座山?jīng)]有纜車,那么FHE這座山附近有沒有其它的山,如果有其它的山的話,有沒有可能在兩山的山頂建有“山頂纜車”?

一堆問題在我附近的空間里縈繞盤旋,我得不到回答,于是,在沒看到“山頂纜車”之前,我開始從山腳下的“群”開始一步一步地爬。。。群是有點(diǎn)抽象,剛開始確實(shí)不太容易理解,不過我走得很快,不一會(huì)就建立了“群,環(huán),域”的簡(jiǎn)單概念。

繼續(xù)爬。。。

爬呀爬。。。
。。。
。。。
。。。
幾天以后。。。

又有一道金光劃過我腦海的上空,原本漆黑的海面上變得亮了起來。這道金光就是:

“很多格子擺在一起,看起來很像矩陣?。 ?br />
是的啊,確實(shí)很多格子排列在一起,從遠(yuǎn)處看,就是一個(gè)矩陣啊,所以,“格”和“矩陣”之間一定存在某種關(guān)系!這個(gè)關(guān)系,不就是兩座山頂之間的“山頂纜車”嗎?!

“矩陣”,我們是比較了解的,如果矩陣和格之間建有山頂纜車的話,豈不美哉。

稍作驗(yàn)證,果不其然,我的想法是對(duì)的,“山頂纜車”早已建成,因?yàn)槲铱吹搅恕罢麛?shù)格”的定義:

“離散的基向量生成空間集合,稱之為整數(shù)格(Integer Lattice)”

這里面可能稍有難度的是“生成空間”,我們先來搞定它。

在線性代數(shù)中,如果我們要描述一個(gè)線性空間的話,我們需要先找到這個(gè)空間的一組基(Basis)。(PS:看到“基”這個(gè)字,你是不是又想起了傅里葉,想起了泰勒,想起了點(diǎn)值法,想起了消失的時(shí)間。。。)

比如常見的二維平面空間(笛卡爾坐標(biāo)系),我們可以選用x軸和y軸的單位向量,作為我們的基向量(或者叫單位向量),分別是:

90a3a2f8-58b1-11ed-a3b6-dac502259ad0.png

這樣的話,任何XY坐標(biāo)系的向量90b65254-58b1-11ed-a3b6-dac502259ad0.png都可以用上面的一組基來表示。即,

90bf17c2-58b1-11ed-a3b6-dac502259ad0.png

其中c_0和c_1可以是任意實(shí)數(shù),如果是任意實(shí)數(shù),那么v的所有可能的組合,就可以鋪滿整個(gè)二維平面空間,我們管所有的v組成的這個(gè)線性空間,就叫做,b_1兩個(gè)基向量的線性生成空間(Span)。

我們不難想象,如果c_0和c_1是實(shí)數(shù),那么b_0,b_1的生成空間是“連成一片”的,可以叫“片”,但是,如果c_0和c_1是只能是整數(shù)的話,那么b_0,b_1的生成空間就由“片”變成了無數(shù)個(gè)離散的“點(diǎn)”,這些點(diǎn)整齊的排列在一起,非常像無數(shù)個(gè)小格子,我們把這樣的一個(gè)離散的生成空間,叫做“整數(shù)格(Integer Lattice)”。

果不其然,從“矩陣”到“格”,只有簡(jiǎn)單的一步,這個(gè)“山頂纜車”建得實(shí)在是太好了。

乘坐這條意外發(fā)現(xiàn)的纜車,我們快速抵達(dá)了“格”,這時(shí),我們離FHE的核心腹地--LWE只有一步之遙了,加油,勝利就在眼前。

90d6c584-58b1-11ed-a3b6-dac502259ad0.png

稍微瞄一眼上圖,我們就會(huì)發(fā)現(xiàn),這確實(shí)是很多格子啊,“格”這個(gè)字用的還是挺好的。

有了Lattice(格),就有很多跟Lattice 有關(guān)的有意思的問題就出現(xiàn)了。比如,想要表達(dá)一個(gè)向量v:

90e93340-58b1-11ed-a3b6-dac502259ad0.png

我們會(huì)發(fā)現(xiàn),這個(gè)向量沒辦法在整數(shù)格中表達(dá)它,因?yàn)檎麛?shù)格中的系數(shù)必須是整數(shù)才行啊。

好了,問題來了,既然不能用整數(shù)格完美表達(dá)v,那么,是否可以找到一個(gè)最接近v的v_0,而v_0可以用整數(shù)格完美表達(dá)。對(duì)于上面的例子:

91042ff6-58b1-11ed-a3b6-dac502259ad0.png

這個(gè)就是著名的CVP(Closest Vector Problem)難題?。?br />
你可能會(huì)說,這算哪門子難題?。课乙幻腌娋推平饬?。

沒錯(cuò),如果只是二維正交基向量的格,那么CVP問題不是特別難,但是,如果基向量不正交呢?如果v的維度變大到, 的成員的值變大到需要1000bit呢?

910e3000-58b1-11ed-a3b6-dac502259ad0.png

這個(gè)難度是被嚴(yán)格證明的,CVP問題是非常難解決的(Nondeterministic Polynomial hard, NP-hard)。

是的,這個(gè)乍看起來很簡(jiǎn)單,實(shí)際上很難的問題,就是格密碼學(xué)的開端。

“什么?!搞了這么久,我以為已經(jīng)達(dá)到了頂峰,竟然被你說成是‘開端‘???!”

“是的,的確是格密碼學(xué)的開端,現(xiàn)實(shí)就是這么的殘酷,你以為的天花板,很可能只是別人的起點(diǎn)。比如,你家的天花板,可能只是樓上的地板,…^_^”

不過不要?dú)怵H,前面就是我們要找的LWE了。

在正式引入LWE之前,我們先回顧一下,送我們快速到達(dá)“格”的山頂纜車—矩陣。

是的,通過上篇的學(xué)習(xí),我們?cè)缇椭懒?,一個(gè)矩陣乘的式子,對(duì)應(yīng)一個(gè)線性方程組:
911ee27e-58b1-11ed-a3b6-dac502259ad0.png
其中A是一個(gè)矩陣,x是一個(gè)向量,b也是一個(gè)向量。

已知A和b,求x的過程,就是求解線性方程組的過程。具體就是在上篇提到的方法:等式兩邊都乘以的逆矩陣,乘完之后,等式左邊就只剩下我們要求出的未知向量了。

現(xiàn)在稍稍把上面的矩陣乘法等式變化一下:
912dc38e-58b1-11ed-a3b6-dac502259ad0.png
其中e是一個(gè)在固定數(shù)值范圍內(nèi)隨機(jī)采集的一個(gè)隨機(jī)噪音向量。這時(shí),之前“等式兩邊都乘以A的逆矩陣”的方法就不行了,那我們?cè)趺辞竽??答案很?jiǎn)單:

“只能暴力破解”

也就是一個(gè)一個(gè)的猜x這個(gè)向量里的值,然后逐漸逼近。

這就是我們苦苦尋找的LWE(Learning With Error)問題!即:

已知一個(gè)矩陣,和它與一個(gè)向量相乘得到的乘積再加上一定的誤差,也就是,如何有效的還原(learn)未知的向量。

“什么?LWE的定義這么草率嗎?”

“是的,有時(shí)候勝利來得就是這么突然。”

“LWE,我們是知道了,可前面為啥提到CVP問題???”

如果我們細(xì)心的看LWE的問題描述的話,可以發(fā)現(xiàn),LWE問題與我們之前提到的CVP問題有著驚人的相似。

不能說相似,簡(jiǎn)直一模一樣。都是需要找到一組“系數(shù)”--,使得一組基向量--的線性組合,無限逼近我們想要的目標(biāo)向量--。這里我們使用誤差噪音--的大小來定義到底我們需要距離目標(biāo)向量多近。

所以,如果CVP是一個(gè)NP-hard問題的話,那么LWE問題也是一個(gè)NP-hard問題了。

現(xiàn)在,我么是時(shí)候展示一下LWE問題的數(shù)學(xué)定義了:

913a5ba8-58b1-11ed-a3b6-dac502259ad0.png

91499762-58b1-11ed-a3b6-dac502259ad0.png

是不是猛一看,一堆亂七八糟的數(shù)學(xué)符號(hào),想直接跳過去?莫慌,其實(shí)很簡(jiǎn)單。此外,這幾個(gè)數(shù)學(xué)符號(hào)會(huì)反復(fù)出現(xiàn)在FHE有關(guān)的論文中,我們是繞不過去的。

從上面的學(xué)習(xí)中,我們知道,一個(gè)LWE問題中,包含以下幾步:

第一,我們需要定義矩陣A的維度--m×n,其中m代表了整個(gè)線性方程組包含幾個(gè)方程,而n代表每個(gè)方程中有幾個(gè)未知數(shù),也稱為“安全系數(shù)”。n越大,LWE越難,m越大,LWE越簡(jiǎn)單。

第二,我們需要決定有限整數(shù)域中的,一般會(huì)選擇一個(gè)很大的素?cái)?shù)。越大,LWE越難。

第三,我們要決定疊加的噪音的取值上限。越大,915b0d44-58b1-11ed-a3b6-dac502259ad0.png越難。

第四,上面三條已經(jīng)足夠,不過,為了簡(jiǎn)單,我們一般只設(shè)置一個(gè)參數(shù)n,然后通過一個(gè)函數(shù)計(jì)算出一組合適的m,q,B,可以保證LWE問題實(shí)例很大概率會(huì)擁有唯一的解,一般m,q都是n的多項(xiàng)式倍數(shù)(m=poly(n))。

我們定義了這些參數(shù)之后,LWE問題就好理解了:已知9164a520-58b1-11ed-a3b6-dac502259ad0.png9171b7a6-58b1-11ed-a3b6-dac502259ad0.png,求未知向量s。其實(shí),還是我們前面反復(fù)看到的這個(gè)矩陣乘法等式:

917b2c8c-58b1-11ed-a3b6-dac502259ad0.png

此情此景,我就不再吟詩了。。。

到此為止,其實(shí)我們已經(jīng)掌握了FHE的絕大部分內(nèi)容了,萬事俱備,東風(fēng)也不欠了,現(xiàn)在我們正式構(gòu)建一個(gè)我們自己的同態(tài)加密系統(tǒng)。

首先,一個(gè)典型的HE系統(tǒng)包含以下幾步:

第一,密鑰生成(KeyGen)
第二,加密(Enc)
第三,解密(Dec)
第四,同態(tài)運(yùn)算(Eval)

我們下面通過一個(gè)具體的例子來說明如何構(gòu)建一個(gè)HE系統(tǒng)。
首先,KeyGen(),我們先隨機(jī)生成一個(gè)私密向量s,然后在這個(gè)向量的最下面加一個(gè)“-1”,變成918b715a-58b1-11ed-a3b6-dac502259ad0.png,對(duì),沒錯(cuò),就是這么草率,就是密鑰。

然后,919dc6a2-58b1-11ed-a3b6-dac502259ad0.png,其中 m是我們要加密的明文-一個(gè)數(shù)。我們通過以下方式計(jì)算密文:

91b14088-58b1-11ed-a3b6-dac502259ad0.png

其中91c40312-58b1-11ed-a3b6-dac502259ad0.png就是我們上面提到的LWE問題,A是隨機(jī)生成的矩陣,s是我們第一步KenGen()生成的,e是一個(gè)隨機(jī)噪音,所以LWE(A,A·s+e)的結(jié)果是一個(gè)看起來亂七八糟的91db795c-58b1-11ed-a3b6-dac502259ad0.png的矩陣。

91ec6a0a-58b1-11ed-a3b6-dac502259ad0.png是一個(gè)91fcbad6-58b1-11ed-a3b6-dac502259ad0.png單位矩陣。

一個(gè)91fcbad6-58b1-11ed-a3b6-dac502259ad0.png矩陣C就是我們對(duì)加密之后的密文。
第三步,9222bf1a-58b1-11ed-a3b6-dac502259ad0.png,在解密時(shí),對(duì)于一個(gè)密文矩陣,我們只需要計(jì)算9231d5d6-58b1-11ed-a3b6-dac502259ad0.png,就會(huì)得到9242fcbc-58b1-11ed-a3b6-dac502259ad0.png我們是我們的密鑰,是已知的,所以,明文m就水落石出了。不知道各位在這時(shí)有沒有想到矩陣的特征值和特征向量這兩個(gè)概念。這里,密鑰是特征向量,明文是特征值,所以不加噪聲的話,明文實(shí)際上是在裸奔,畢竟求一個(gè)已知矩陣的特征值和特征向量還是很容易的!

第四步,92535b70-58b1-11ed-a3b6-dac502259ad0.png,即,密文直接加、乘就可以了。這里需要注意的是,密文下的乘法運(yùn)算可能會(huì)將噪音放大,導(dǎo)致解密失敗,為了提高成功解密的概率,我們可以將和,進(jìn)行二進(jìn)制分解(就是用只包含0、1的二進(jìn)制表示)。

如果你看到了這里,那么恭喜你,已基本掌握了FHE的精髓,最后,我們用下圖來結(jié)束本文:

92695862-58b1-11ed-a3b6-dac502259ad0.png

我定睛觀察上面的圖,持續(xù)十分鐘,然后閉上眼睛,這時(shí)圖中的格子忽然動(dòng)了起來:

Polynomial、Point-Value、Convolution、DFT、FFT、NTT、UnitRoot、PrimitiveRoot、Matrix、Lattice、LWE。。。

這些原來一個(gè)個(gè)相互獨(dú)立的單詞,忽然間變成了一個(gè)個(gè)精靈,他們開心的跳著歡快的舞步,旋轉(zhuǎn)、跳躍、相互握手,點(diǎn)頭致意。。。

。。。

。。。

。。。
最后的最后,送上一幅藏寶圖,祝一路順風(fēng):

92c09c94-58b1-11ed-a3b6-dac502259ad0.png







審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 傅里葉變換
    +關(guān)注

    關(guān)注

    6

    文章

    442

    瀏覽量

    42623
  • 三角函數(shù)
    +關(guān)注

    關(guān)注

    0

    文章

    13

    瀏覽量

    6746
  • 同態(tài)加密
    +關(guān)注

    關(guān)注

    1

    文章

    5

    瀏覽量

    1921

原文標(biāo)題:看完這篇文章,還搞不懂全同態(tài)加密,你過來打我--基于格密碼全同態(tài)加密的數(shù)學(xué)基礎(chǔ)

文章出處:【微信號(hào):LinuxDev,微信公眾號(hào):Linux閱碼場(chǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    加密算法的選擇對(duì)于加密安全有多重要?

    加密算法的選擇對(duì)于加密安全至關(guān)重要,因?yàn)樗苯佑绊懙綌?shù)據(jù)保護(hù)的有效性和可靠性。以下是幾個(gè)關(guān)鍵點(diǎn)來說明加密算法選擇的重要性: 加密強(qiáng)度: 加密
    的頭像 發(fā)表于 12-17 15:59 ?111次閱讀

    常見的加密算法有哪些?它們各自的優(yōu)勢(shì)是什么?

    常見的加密算法及其優(yōu)勢(shì)如下: AES(Advanced Encryption Standard): AES是一種對(duì)稱加密算法,采用分組密碼體制,支持128位、192位和256位密鑰長(zhǎng)度。AES的優(yōu)勢(shì)
    的頭像 發(fā)表于 12-17 15:57 ?122次閱讀

    對(duì)稱加密技術(shù)在實(shí)際應(yīng)用中如何保障數(shù)據(jù)安全?

    ,如使用安全的密鑰協(xié)商和密鑰分發(fā)方式,定期更換密鑰等。 密碼學(xué)原理的安全性: 對(duì)稱加密算法的安全性基于密碼學(xué)原理,需要確保密碼學(xué)原理的安全性,如避免使用弱
    的頭像 發(fā)表于 12-16 13:59 ?173次閱讀

    NAS重置密碼攻略來襲,讓你告別‘密碼焦慮’!

    你是否曾遇到過這樣的尷尬場(chǎng)景:當(dāng)你登錄某個(gè)賬號(hào)時(shí),突然發(fā)現(xiàn)自己的腦子像是被格式化了一樣,一片空白。好不容易憑感覺輸入了幾組可能的密碼組合,結(jié)果系統(tǒng)無情地吐出了“密碼錯(cuò)誤”的提示。 更讓人抓狂
    的頭像 發(fā)表于 12-11 15:29 ?213次閱讀
    NAS重置<b class='flag-5'>密碼</b>攻略來襲,讓你告別‘<b class='flag-5'>密碼</b>焦慮’!

    Linux系統(tǒng)設(shè)置用戶密碼規(guī)則(復(fù)雜密碼策略)方法

    Linux系統(tǒng)下的用戶密碼的有效期 可以修改密碼可以通過login.defs文件控制。設(shè)置密碼過期期限(默認(rèn)情況下,用戶的密碼永不過期。) 編輯 /etc/login.defs 文件,
    的頭像 發(fā)表于 12-07 09:24 ?306次閱讀

    艾體寶洞察 一文讀懂最新密碼存儲(chǔ)方法,揭秘密碼存儲(chǔ)常見誤區(qū)!

    本篇文章將引入并介紹密碼存儲(chǔ)中的基石,關(guān)于密碼哈希、鹽加密(Salting)、密鑰派生函數(shù)(KDF)的原理及其應(yīng)用,揭示密碼存儲(chǔ)中的常見誤區(qū),并分享一系列安全實(shí)踐。
    的頭像 發(fā)表于 09-14 17:37 ?378次閱讀
    艾體寶洞察 一文讀懂最新<b class='flag-5'>密碼</b>存儲(chǔ)方法,揭秘<b class='flag-5'>密碼</b>存儲(chǔ)常見誤區(qū)!

    擁有SHA-256核心和32Kbits的EEPROM應(yīng)用的加密芯片-GEN-FA

    加密芯片 - GEN -FA有32 Kbits的EEPROM。配置數(shù)據(jù)和用戶數(shù)據(jù)可以保存在EEPRO m。數(shù)據(jù)由密碼加密n保護(hù)。GEN有SHA-256核心。SHA-256用于身份驗(yàn)證。
    的頭像 發(fā)表于 09-13 09:36 ?306次閱讀
    擁有SHA-256核心和32Kbits的EEPROM應(yīng)用的<b class='flag-5'>加密</b>芯片-GEN-FA

    深圳特信屏蔽器 4G5G手機(jī)信號(hào)放大器:一鍵開啟,屋信號(hào)滿

    深圳特信屏蔽器|4G5G手機(jī)信號(hào)放大器:一鍵開啟,屋信號(hào)滿
    的頭像 發(fā)表于 07-23 09:03 ?667次閱讀

    SSID和密碼是否以加密形式存儲(chǔ)在ESP8266中?

    1.) SSID和密碼是否以加密形式存儲(chǔ)在ESP8266中。如果是,加密格式是什么? 2.) 芯片的唯一MAC ID是否加密
    發(fā)表于 07-22 07:35

    請(qǐng)問ESP32使用AT固件如何讓配對(duì)密碼大于6位?

    AT+BLESECPARAM 指令密匙長(zhǎng)度設(shè)置成多少都回復(fù)的是 6 位數(shù)字的配對(duì)密碼。 使用的指令如下: 藍(lán)牙 AT 加密指令參考: AT+RESTORE // 恢復(fù)出廠設(shè)置 AT+GMR//查詢模組版本信息
    發(fā)表于 06-27 07:42

    MySQL忘記root密碼解決方案

    mysql登錄密碼為password()算法加密,解密成本太高,以下為通用方案; 原理:mysql提供了特殊啟動(dòng)方式,即跳過權(quán)限表驗(yàn)證,啟動(dòng)后,登錄不需要提供密碼; 登錄后,即可修改mysql數(shù)據(jù)庫的user表,重置
    的頭像 發(fā)表于 04-23 16:08 ?728次閱讀

    AES加密協(xié)議是什么?AES加密協(xié)議的應(yīng)用

    AES(Advanced Encryption Standard,高級(jí)加密標(biāo)準(zhǔn))是一種廣泛使用的對(duì)稱密鑰加密協(xié)議,它被設(shè)計(jì)用于保護(hù)電子數(shù)據(jù)的安全。以下是對(duì)AES加密協(xié)議的詳細(xì)概述: 歷史與標(biāo)準(zhǔn)化
    的頭像 發(fā)表于 04-15 15:34 ?897次閱讀

    什么是TLS加密?TLS加密的功能特點(diǎn)

    :使用強(qiáng)大的密碼學(xué)算法(如AES、ChaCha20等)對(duì)傳輸中的數(shù)據(jù)進(jìn)行加密,確保即使數(shù)據(jù)在傳輸過程中被截獲,未經(jīng)授權(quán)的第三方
    的頭像 發(fā)表于 04-03 13:49 ?679次閱讀

    指紋加密移動(dòng)硬盤詳細(xì)方案解析

    全盤數(shù)據(jù)硬件SM4/AES加密存儲(chǔ),即使拆出存儲(chǔ)芯片,也無法通過探針攻擊、功率攻擊等手段來破解存儲(chǔ)的密文數(shù)據(jù)。  全數(shù)字密碼鍵盤,口令長(zhǎng)度范圍6~32位。  支持密鑰備份和恢復(fù)功能,密鑰備份采用
    的頭像 發(fā)表于 03-18 15:23 ?703次閱讀
    指紋<b class='flag-5'>加密</b>移動(dòng)硬盤詳細(xì)方案解析

    MySQL密碼忘記了怎么辦?MySQL密碼快速重置方法步驟命令示例!

    MySQL密碼忘記了怎么辦?MySQL密碼快速重置方法步驟命令示例! MySQL是一種常用的關(guān)系型數(shù)據(jù)庫管理系統(tǒng),如果你忘記了MySQL的密碼,不必?fù)?dān)心,可以通過一些簡(jiǎn)單的步驟來快速重置密碼
    的頭像 發(fā)表于 01-12 16:06 ?769次閱讀