0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Redis欺詐檢測方案及機器學(xué)習(xí)算法

廣州虹科電子科技有限公司 ? 來源:廣州虹科電子科技有限公 ? 作者:廣州虹科電子科技 ? 2022-10-28 10:35 ? 次閱讀

文章概覽

各行各業(yè)的欺詐者一直存在,尤其是金融服務(wù)行業(yè)欺詐性事件更是數(shù)不勝數(shù)。為了阻止欺詐事件的產(chǎn)生,反欺詐者也越來越多。隨著人工智能在計算機領(lǐng)域的發(fā)展,使用機器學(xué)習(xí)進行欺詐檢測已在許多行業(yè)中流行起來。

本文中,虹科云科技將探討如何使用機器學(xué)習(xí)進行欺詐檢測、一些最常用的機器學(xué)習(xí)欺詐檢測算法和最佳實踐,同時虹科云科技將會在11月1日20:00舉辦免費直播,從Redis數(shù)據(jù)庫角度分享企業(yè)欺詐檢測解決方案。

用于欺詐檢測的最佳機器學(xué)習(xí)算法

一、使用機器學(xué)習(xí)相對于傳統(tǒng)方法的好處

1.機器學(xué)習(xí)的概念

在深入研究如何使用機器學(xué)習(xí)來檢測欺詐之前,我們先簡要定義一下機器學(xué)習(xí)是什么。機器學(xué)習(xí)是人工智能的一種應(yīng)用,它使系統(tǒng)能夠從經(jīng)驗中學(xué)習(xí)和改進,而無需明確編程。

2.欺詐檢測的方法

欺詐檢測有兩種方法。最常見的是基于規(guī)則的方法,而最有效的是使用機器學(xué)習(xí)。基于規(guī)則的檢測已經(jīng)存在了一段時間并且仍被廣泛使用,但該方法難以應(yīng)對不斷變化的欺詐環(huán)境。此外,使用規(guī)則意味著必須撒大網(wǎng),可能會導(dǎo)致一些正常的交易被標(biāo)記為欺詐。例如,風(fēng)險分析師可以根據(jù)位置創(chuàng)建規(guī)則從而阻止假定有風(fēng)險的位置的交易。

通過機器學(xué)習(xí),規(guī)則進行了相應(yīng)的改進。通過機器學(xué)習(xí),系統(tǒng)可以從以往的經(jīng)驗(數(shù)據(jù))中學(xué)習(xí),而這往往是應(yīng)對欺詐事件的好方法。使用機器學(xué)習(xí)并不意味著規(guī)則沒有用或已經(jīng)過時。事實上,結(jié)合使用這兩種方法可以讓你在與欺詐者斗智斗勇過程中獲得最佳機會。

二、使用機器學(xué)習(xí)進行欺詐檢測

在使用機器學(xué)習(xí)檢測欺詐時,通常有兩種方法可以解決:

第一個是異常檢測,它從無監(jiān)督學(xué)習(xí)的角度解決問題。

另一種是分類,這是一種有監(jiān)督的學(xué)習(xí)方法。

1.異常檢測

一般來說,異常檢測,也稱為聚類,是一種用于識別異常行為的機器學(xué)習(xí)技術(shù)。表明異常行為的遙遠(yuǎn)數(shù)據(jù)點被稱為點異常。在檢測金融欺詐時,重要的是要了解大多數(shù)金融交易(超過 99%)不是欺詐性的。因此,欺詐者實際進行的交易中只有一小部分是點異常,這些小部分的點異常則是企業(yè)系統(tǒng)需要標(biāo)記的事務(wù)。

2.分類

在機器學(xué)習(xí)中使用分類,是通過不同的角度解來檢測欺詐。在這里,需要訓(xùn)練一個模型來學(xué)習(xí)好交易和壞交易的特征,以便對新交易進行分類。值得注意的是,需要有足夠數(shù)量的數(shù)據(jù)并標(biāo)記好了“好的交易數(shù)據(jù)”和“壞交易的數(shù)據(jù)”,這樣系統(tǒng)對數(shù)據(jù)進行模型訓(xùn)練后才能分辨哪些交易具有欺詐性。

三、機器學(xué)習(xí)欺詐檢測算法

目前有多種算法可以進行欺詐檢測,至于哪種算法更好、更適用,關(guān)鍵還要看企業(yè)的數(shù)據(jù)。下面是目前使用比較多的一些機器學(xué)習(xí)欺詐檢測算法。

1.邏輯回歸

邏輯回歸是最基本,但功能最強大的算法,可用于預(yù)測真假(二進制)值。邏輯回歸通過將數(shù)據(jù)擬合到邏輯函數(shù)來從一組自變量中估計離散值(通常是欺詐/無欺詐等二進制值)。

2.決策樹

決策樹是另一種流行的算法,它學(xué)習(xí)規(guī)則來分割或分類數(shù)據(jù)。決策樹算法最有趣的一點是,該模型是一組易于解釋的規(guī)則,同時也可以采用這些規(guī)則并創(chuàng)建基于規(guī)則的系統(tǒng)。但是,該模型絕不是基于規(guī)則的系統(tǒng),因為基礎(chǔ)數(shù)據(jù)的微小變化可能會導(dǎo)致一組完全不同的規(guī)則。

3.隨機森林

隨機森林是一種基于多個決策樹的算法,可以提供更準(zhǔn)確的分類。它通過平均單個決策樹的結(jié)果來做到這一點,其預(yù)測能力是非常優(yōu)秀的。隨機森林適用于具有大量輸入變量的訓(xùn)練集。

但從一方面看,隨機森林比決策樹更難解釋。通過隨機森林最終會得到許多規(guī)則,而不是一套規(guī)則。尤其需要對系統(tǒng)合規(guī)性或其他監(jiān)管要求進行解釋時,多種規(guī)則可能會出現(xiàn)問題。

4.K-近鄰算法 (KNN)

K-近鄰算法是一個簡單的算法,它存儲所有可用案例,通過對其k個最佳鄰居進行多數(shù)投票來對新案例進行分類。在K-近鄰算法中,會使用像歐幾里得距離這樣的距離函數(shù)。此外,該算法的訓(xùn)練過程并不完全生成模型。相反,“訓(xùn)練”和“分類”是即時發(fā)生的。

這使得 KNN 算法在欺詐檢測方面比其他機器學(xué)習(xí)算法的計算密集度更高。

5.K-均值

K-均值是一種解決聚類問題的無監(jiān)督學(xué)習(xí)算法(不同于 KNN)。該算法將給定的數(shù)據(jù)集分組到多個集群中,以使集群中的數(shù)據(jù)點盡可能相似。與KNN類似,K-均值也會使用距離函數(shù)。

四、在欺詐檢測中使用機器學(xué)習(xí)面臨的挑戰(zhàn)

1.標(biāo)簽不平衡

在現(xiàn)實世界的欺詐檢測中,幾乎都需要處理不平衡的數(shù)據(jù)集,因為欺詐條目在數(shù)據(jù)集中僅占少數(shù)。如果用戶使用的是有監(jiān)督的機器學(xué)習(xí),則更適合處理平衡數(shù)據(jù)而非不平衡的數(shù)據(jù)集。

對于該問題,一種常見的解決方案是使用上采樣等技術(shù)來增加少數(shù)欺詐樣本或使用下采樣來減少大多數(shù)合法樣本。

2.非平穩(wěn)數(shù)據(jù)

想要抓住欺詐者,就像一場貓捉老鼠的游戲。因為欺詐行為會迅速發(fā)生變化,這也會導(dǎo)致數(shù)據(jù)發(fā)生變化。因此,不斷訓(xùn)練新模型來應(yīng)對欺詐非常關(guān)鍵。一種有效的方法是建立一個模型再訓(xùn)練過程,以便更快地適應(yīng)并更好地捕捉欺詐行為。

具體如何解決企業(yè)面臨的欺詐檢測問題呢?虹科云科技將會在11月1日20:00舉辦免費直播,從Redis數(shù)據(jù)庫角度分享企業(yè)欺詐檢測解決方案。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)庫
    +關(guān)注

    關(guān)注

    7

    文章

    3807

    瀏覽量

    64434
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8420

    瀏覽量

    132687
  • 虹科電子
    +關(guān)注

    關(guān)注

    0

    文章

    602

    瀏覽量

    14360
  • Redis
    +關(guān)注

    關(guān)注

    0

    文章

    376

    瀏覽量

    10881

原文標(biāo)題:【11月1日免費課程直播】Redis欺詐檢測方案及機器學(xué)習(xí)算法!

文章出處:【微信號:Hongketeam,微信公眾號:廣州虹科電子科技有限公司】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?157次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    NPU與機器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?472次閱讀

    人工智能、機器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2493次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    基于機器學(xué)習(xí)的IWR6843AOP跌倒和姿態(tài)檢測實現(xiàn)

    電子發(fā)燒友網(wǎng)站提供《基于機器學(xué)習(xí)的IWR6843AOP跌倒和姿態(tài)檢測實現(xiàn).pdf》資料免費下載
    發(fā)表于 09-03 10:02 ?1次下載
    基于<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的IWR6843AOP跌倒和姿態(tài)<b class='flag-5'>檢測</b>實現(xiàn)

    深度學(xué)習(xí)在工業(yè)機器視覺檢測中的應(yīng)用

    識別等任務(wù)。傳統(tǒng)的機器視覺檢測方法通常依賴于手工設(shè)計的特征和固定的算法,難以應(yīng)對復(fù)雜多變的工業(yè)環(huán)境。而深度學(xué)習(xí)的引入,為工業(yè)機器視覺
    的頭像 發(fā)表于 07-08 10:40 ?1078次閱讀

    機器學(xué)習(xí)算法原理詳解

    機器學(xué)習(xí)作為人工智能的一個重要分支,其目標(biāo)是通過讓計算機自動從數(shù)據(jù)中學(xué)習(xí)并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1083次閱讀

    機器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個經(jīng)典數(shù)據(jù)集,在統(tǒng)計學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1666次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    紅色警戒!深度偽造欺詐蔓延全球,ADVANCE.AI助力出海企業(yè)反欺詐新升級

    近年來生成式人工智能技術(shù)迅猛發(fā)展,由此衍生的深度偽造 (Deepfake) 欺詐也愈發(fā)盛行,技術(shù)門檻的降低、生成效果的逼真、多樣化的應(yīng)用場景與檢測難度的增加,讓欺詐者們紛紛投向深度偽造欺詐
    的頭像 發(fā)表于 06-12 15:57 ?490次閱讀

    機器視覺在焊縫檢測中的應(yīng)用

    。為了解決這些問題,機器視覺技術(shù)被引入到焊縫檢測中,提供了一種高效、準(zhǔn)確且可重復(fù)的解決方案。 機器視覺的基本原理 機器視覺
    的頭像 發(fā)表于 05-20 11:10 ?415次閱讀

    基于深度學(xué)習(xí)的缺陷檢測方案

    圖像預(yù)處理通常包括直方圖均衡化、濾波去噪、灰度二值化、再次濾波幾部分,以得到前后景分離的簡單化圖像信息;隨后利用數(shù)學(xué)形態(tài)學(xué)、傅里葉變換、Gabor 變換等算法以及機器學(xué)習(xí)模型完成缺陷的標(biāo)記與
    發(fā)表于 04-23 17:23 ?909次閱讀
    基于深度<b class='flag-5'>學(xué)習(xí)</b>的缺陷<b class='flag-5'>檢測</b><b class='flag-5'>方案</b>

    機器學(xué)習(xí)怎么進入人工智能

    ,人工智能已成為一個熱門領(lǐng)域,涉及到多個行業(yè)和領(lǐng)域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關(guān)鍵是使用機器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來進行預(yù)測和判斷的
    的頭像 發(fā)表于 04-04 08:41 ?336次閱讀

    Redis開源版與Redis企業(yè)版,怎么選用?

    點擊“藍(lán)字”關(guān)注我們數(shù)以千計的企業(yè)和數(shù)以百萬計的開發(fā)人員Redis開源版來構(gòu)建應(yīng)用程序。但隨著用戶數(shù)量、數(shù)據(jù)量和地區(qū)性的增加,成本、可擴展性、運營和可用性等問題也隨之而來。Redis企業(yè)版
    的頭像 發(fā)表于 04-04 08:04 ?1081次閱讀
    <b class='flag-5'>Redis</b>開源版與<b class='flag-5'>Redis</b>企業(yè)版,怎么選用?

    機器視覺如何檢測橡膠圈外觀尺寸檢測?

    表面是否存在異物,如雜質(zhì)或污漬。系統(tǒng)能夠快速識別并標(biāo)記出這些異物?;?b class='flag-5'>機器學(xué)習(xí)算法機器視覺系統(tǒng)可以將檢測到的橡膠圈按照不同的標(biāo)準(zhǔn)進行分類,
    的頭像 發(fā)表于 03-15 17:24 ?583次閱讀

    萬事達(dá)卡推出欺詐檢測AI大模型

    全球領(lǐng)先的支付技術(shù)公司萬事達(dá)卡(MasterCard)近日宣布推出其自研的生成式AI大模型“Decision Intelligence Pro”(決策智能專業(yè)版),以更快速、準(zhǔn)確地檢測和防止欺詐交易。
    的頭像 發(fā)表于 02-05 10:34 ?1121次閱讀

    基于機器視覺和深度學(xué)習(xí)的焊接質(zhì)量檢測系統(tǒng)

    基于機器視覺和深度學(xué)習(xí)的焊接質(zhì)量檢測系統(tǒng)是一種創(chuàng)新性的技術(shù)解決方案,它結(jié)合了先進的計算機視覺和深度學(xué)習(xí)
    的頭像 發(fā)表于 01-18 17:50 ?819次閱讀