測(cè)不對(duì)SiC MOSFET驅(qū)動(dòng)波形六 大 原 因
開關(guān)特性是功率半導(dǎo)體開關(guān)器件最重要的特性之一,由器件在開關(guān)過程中的驅(qū)動(dòng)電壓、端電壓、端電流表示。一般在進(jìn)行器件評(píng)估時(shí)可以采用雙脈沖測(cè)試,而在電路設(shè)計(jì)時(shí)直接測(cè)量在運(yùn)行中的變換器上的器件波形,為了得到正確的結(jié)論,獲得精準(zhǔn)的開關(guān)過程波形至關(guān)重要。
SiC MOSFET相較于Si MOS和IGBT能夠顯著提高變換器的效率和功率密度,同時(shí)還能夠降低系統(tǒng)成本,受到廣大電源工程師的青睞,越來越多的功率變換器采用基于SiC MOSFET的方案。SiC MOSFET與Si開關(guān)器件的一個(gè)重要區(qū)別是它們的柵極耐壓能力不同,Si開關(guān)器件柵極耐壓能力一般都能夠達(dá)到±30V,而SiC MOSFET柵極正壓耐壓能力一般在+20V至+25V,負(fù)壓耐壓能力一般僅有-3V至-10V。同時(shí),SiC MOSFET開關(guān)速度快,開關(guān)過程中柵極電壓更容易發(fā)生震蕩,如果震蕩超過其柵極耐壓能力,則有可能導(dǎo)致器件柵極可靠性退化或直接損壞。
很多電源工程師剛剛接觸SiC MOSFET不久,往往會(huì)在驅(qū)動(dòng)電壓測(cè)量上遇到問題,即測(cè)得的驅(qū)動(dòng)電壓震蕩幅值較大、存在與理論不相符的尖峰,導(dǎo)致搞不清楚是器件的問題還是電路設(shè)計(jì)的問題,進(jìn)而耽誤開發(fā)進(jìn)度。
接下來我們將向您介紹六種由于測(cè)試問題而導(dǎo)致的驅(qū)動(dòng)電壓離譜的原因。
原因1:高壓差分探頭衰減倍數(shù)過大
高壓差分探頭的為差分輸入且輸入阻抗高,在電源開發(fā)過程中一般都會(huì)選擇它來測(cè)量驅(qū)動(dòng)波形。
有時(shí)在使用高壓差分探頭時(shí)獲得的驅(qū)動(dòng)波形顯得非常粗,這往往是由于高壓差分探頭的衰減倍數(shù)過大導(dǎo)致的。衰減倍數(shù)大,高壓差分探頭的量程就大,使得分辨率大幅下降,同時(shí)示波器在還原信號(hào)時(shí)還會(huì)將噪聲放大。此時(shí)就需要選擇衰減倍數(shù)較小的高壓差分探頭或選擇高壓差分探頭衰減比較小的檔位。我們使用圖1中的高壓差分探頭測(cè)量驅(qū)動(dòng)電壓,衰減倍數(shù)分別選擇50倍和500倍,在下圖中可以明顯到500倍衰減倍數(shù)下驅(qū)動(dòng)波形非常粗。
50倍與500倍衰減波形對(duì)比
原因2:高壓差分探頭測(cè)量線未雙絞
高壓差分探頭一般用于測(cè)量高壓信號(hào),為了使用安全及方便接線,其前端是兩根接近20cm的測(cè)量線。在進(jìn)行測(cè)量時(shí),可以將兩根測(cè)量線看作為一個(gè)天線,會(huì)接收外界的磁場(chǎng)信號(hào)。而SiC MOSFET的開關(guān)速度快,開關(guān)過程電流變化速率大,其產(chǎn)生的磁場(chǎng)穿過由高壓差分探頭測(cè)量線形成的天線時(shí)就會(huì)影響測(cè)量結(jié)果。為了降低這一影響,可以將高壓差分探頭的兩根測(cè)量線進(jìn)行雙絞,盡量減小它們圍成的面積。從下圖中可以看到,在將測(cè)量線未雙絞進(jìn)行雙絞后,驅(qū)動(dòng)電壓波形的震蕩幅度明顯降低了。
是否雙絞的波形對(duì)比
原因3:無源探頭未進(jìn)行阻抗匹配
阻抗匹配與未阻抗匹配波形對(duì)比
無源探頭衰減倍數(shù)小、帶寬高,往往可以在雙脈沖測(cè)試時(shí)用來獲得更為精準(zhǔn)的驅(qū)動(dòng)電壓波形。無源探頭的等效電路如下所示,只有當(dāng)其與示波器達(dá)到阻抗匹配時(shí)才能獲得正確的波形。一般情況下,我們可以通過旋轉(zhuǎn)無源探頭尾部的旋鈕調(diào)節(jié)電容來進(jìn)行阻抗匹配調(diào)節(jié),此外還有部分探頭能夠在示波器上完成自動(dòng)補(bǔ)償。
當(dāng)驅(qū)動(dòng)電壓為-4V/+15V時(shí),通過圖8可以看到,是否正確補(bǔ)償對(duì)測(cè)量結(jié)果有非常大的影響。當(dāng)探頭未進(jìn)行阻抗匹配時(shí),驅(qū)動(dòng)波形振蕩幅度明顯變大,測(cè)量量值也更大,這將會(huì)導(dǎo)致對(duì)驅(qū)動(dòng)電壓的誤判。當(dāng)探頭正確阻抗匹配時(shí),驅(qū)動(dòng)電壓振幅更小,測(cè)量值與實(shí)際外加電壓一致。
無源探頭等效示意圖
參考圖為泰克無源探頭
原因4:無源探頭未使用最小環(huán)路測(cè)量
無源探頭標(biāo)配的接地線有接近10cm長(zhǎng),采用這樣的接地線時(shí),會(huì)出現(xiàn)同高壓差分探頭一樣,即測(cè)量線圍出一個(gè)很大的面積,成為一個(gè)天線,測(cè)量結(jié)果會(huì)受到SiC MOSFET開關(guān)過程中高速變化的電流的影響。同時(shí),過長(zhǎng)的接地線可以看做一個(gè)電感,也會(huì)導(dǎo)致震蕩的產(chǎn)生。
為了降低這一影響,可以使用廠商標(biāo)配的彈簧接地針,其長(zhǎng)度短、圍出的面積更小。從上圖中可以看到,使用標(biāo)配接地線時(shí),驅(qū)動(dòng)波形震蕩嚴(yán)重,其峰值最大達(dá)到xxV,超過了SiC MOSFET柵極耐壓能力;當(dāng)使用彈簧接地針后,波形震蕩大大減輕了,幅值均在SiC MOSFET柵極耐壓能力范圍內(nèi)。
長(zhǎng)接地線與短彈簧地線波形對(duì)比
示波器自帶長(zhǎng)接地線、短彈簧地線
原因5:探頭高頻共模抑制比不夠
對(duì)于橋式電路中的上管SiC MOSFET,其S極為橋臂中點(diǎn),其電壓在電路工作時(shí)是跳變的。其跳變的幅度為電路的母線電壓,對(duì)于1200V SiC MOSFET而言,母線電壓為800V;其跳變的速度為SiC MOSFET的開關(guān)速度,可達(dá)到100V/ns。此時(shí)要測(cè)量上管的驅(qū)動(dòng)電壓,就需要面對(duì)這樣高幅值、高速度跳變的共模電壓。
從上圖中可以看到,當(dāng)采用常見的高壓差分探頭時(shí),驅(qū)動(dòng)波形振蕩更大,在第一個(gè)脈沖內(nèi)Ton時(shí)間測(cè)量值偏低,在Toff時(shí)間內(nèi)存在偏置,在第二個(gè)脈沖上升沿存在嚴(yán)重的震蕩。這主要是由于高壓差分探頭在高頻下的共模抑制比不夠?qū)е碌?,此時(shí)我們就需要使用具有更高共模抑制比的光隔離探頭來測(cè)量上管驅(qū)動(dòng)電壓波形。從上圖中可以看到,當(dāng)采用光隔離探頭后,波形震蕩明顯減小,第二脈沖上升沿的嚴(yán)重震蕩消失,在關(guān)斷時(shí)間內(nèi)電壓測(cè)量值與實(shí)際外加電壓接近。
光隔離探頭與高壓差分探頭波形對(duì)比
原因6:測(cè)量點(diǎn)離器件引腳根部過遠(yuǎn)
4pin的圖片和等效示意圖
當(dāng)我們測(cè)量驅(qū)動(dòng)電壓波形時(shí),探頭并不能直接接觸到SiC MOSFET芯片,而只是能接到器件的引腳上??梢詫⑵骷囊_看作為電感,那么我們實(shí)際測(cè)得的驅(qū)動(dòng)電壓為真實(shí)的柵-源極電壓和測(cè)量點(diǎn)之間引腳電感上壓降之和。那么,測(cè)量點(diǎn)之間引腳長(zhǎng)度越長(zhǎng),測(cè)量結(jié)果與SiC MOSFET芯片上真實(shí)的柵-源極電壓差異越大。
為了降低這一影響,需要將探頭接到器件引腳的根部,最大限度得縮短測(cè)量點(diǎn)之間引腳的長(zhǎng)度。從圖14中可以看到,當(dāng)測(cè)量點(diǎn)位于引腳根部時(shí),開通驅(qū)動(dòng)波形振蕩幅值及振蕩頻率明顯減少,關(guān)斷驅(qū)動(dòng)波形振蕩幅值也明顯減少。
探頭接引腳根部與遠(yuǎn)離根部
引腳根部與遠(yuǎn)離根部波形對(duì)比
要想使用好SiC MOSFET,充分發(fā)揮其優(yōu)異的特性,使用合適的設(shè)備和測(cè)量方法獲得正確的波形非常重要。相信讀完本文的你,不會(huì)再被錯(cuò)誤的波形坑了。
審核編輯 :李倩
-
MOSFET
+關(guān)注
關(guān)注
147文章
7221瀏覽量
213920 -
SiC
+關(guān)注
關(guān)注
29文章
2869瀏覽量
62816
原文標(biāo)題:測(cè)的離譜!SiC MOSFET驅(qū)動(dòng)電壓測(cè)試結(jié)果離譜的六大原因!
文章出處:【微信號(hào):mcu168,微信公眾號(hào):硬件攻城獅】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論