0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

大數(shù)據(jù)—決策樹(shù)

恬靜簡(jiǎn)樸1 ? 來(lái)源:恬靜簡(jiǎn)樸1 ? 作者:恬靜簡(jiǎn)樸1 ? 2022-10-20 10:01 ? 次閱讀

大數(shù)據(jù)————決策樹(shù)(decision tree)

決策樹(shù)(decision tree):是一種基本的分類與回歸方法,主要討論分類的決策樹(shù)。

在分類問(wèn)題中,表示基于特征對(duì)實(shí)例進(jìn)行分類的過(guò)程,可以認(rèn)為是if-then的集合,也可以認(rèn)為是定義在特征空間與類空間上的條件概率分布。

決策樹(shù)通常有三個(gè)步驟:特征選擇、決策樹(shù)的生成、決策樹(shù)的修剪。

用決策樹(shù)分類:從根節(jié)點(diǎn)開(kāi)始,對(duì)實(shí)例的某一特征進(jìn)行測(cè)試,根據(jù)測(cè)試結(jié)果將實(shí)例分配到其子節(jié)點(diǎn),此時(shí)每個(gè)子節(jié)點(diǎn)對(duì)應(yīng)著該特征的一個(gè)取值,如此遞歸的對(duì)實(shí)例進(jìn)行測(cè)試并分配,直到到達(dá)葉節(jié)點(diǎn),最后將實(shí)例分到葉節(jié)點(diǎn)的類中。

決策樹(shù)學(xué)習(xí)的目標(biāo):根據(jù)給定的訓(xùn)練數(shù)據(jù)集構(gòu)建一個(gè)決策樹(shù)模型,使它能夠?qū)?shí)例進(jìn)行正確的分類。

決策樹(shù)學(xué)習(xí)的本質(zhì):從訓(xùn)練集中歸納出一組分類規(guī)則,或者說(shuō)是由訓(xùn)練數(shù)據(jù)集估計(jì)條件概率模型。

決策樹(shù)學(xué)習(xí)的損失函數(shù):正則化的極大似然函數(shù)

決策樹(shù)學(xué)習(xí)的測(cè)試:最小化損失函數(shù)

決策樹(shù)學(xué)習(xí)的目標(biāo):在損失函數(shù)的意義下,選擇最優(yōu)決策樹(shù)的問(wèn)題。

數(shù)據(jù)挖掘中決策樹(shù)是一種經(jīng)常要用到的技術(shù),可以用于分析數(shù)據(jù),同樣也可以用來(lái)作預(yù)測(cè)。一個(gè)決策樹(shù)包含三種類型的節(jié)點(diǎn):

決策節(jié)點(diǎn):通常用矩形框來(lái)表示

機(jī)會(huì)節(jié)點(diǎn):通常用圓圈來(lái)表示

終結(jié)點(diǎn):通常用三角形來(lái)表示

剪枝是決策樹(shù)停止分支的方法之一,剪枝有分預(yù)先剪枝和后剪枝兩種。預(yù)先剪枝是在樹(shù)的生長(zhǎng)過(guò)程中設(shè)定一個(gè)指標(biāo),當(dāng)達(dá)到該指標(biāo)時(shí)就停止生長(zhǎng),這樣做容易產(chǎn)生“視界局限”,就是一旦停止分支,使得節(jié)點(diǎn)N成為葉節(jié)點(diǎn),就斷絕了其后繼節(jié)點(diǎn)進(jìn)行“好”的分支操作的任何可能性。不嚴(yán)格的說(shuō)這些已停止的分支會(huì)誤導(dǎo)學(xué)習(xí)算法,導(dǎo)致產(chǎn)生的樹(shù)不純度降差最大的地方過(guò)分靠近根節(jié)點(diǎn)。后剪枝中樹(shù)首先要充分生長(zhǎng),直到葉節(jié)點(diǎn)都有最小的不純度值為止,因而可以克服“視界局限”。然后對(duì)所有相鄰的成對(duì)葉節(jié)點(diǎn)考慮是否消去它們,如果消去能引起令人滿意的不純度增長(zhǎng),那么執(zhí)行消去,并令它們的公共父節(jié)點(diǎn)成為新的葉節(jié)點(diǎn)。這種“合并”葉節(jié)點(diǎn)的做法和節(jié)點(diǎn)分支的過(guò)程恰好相反,經(jīng)過(guò)剪枝后葉節(jié)點(diǎn)常常會(huì)分布在很寬的層次上,樹(shù)也變得非平衡。后剪枝技術(shù)的優(yōu)點(diǎn)是克服了“視界局限”效應(yīng),而且無(wú)需保留部分樣本用于交叉驗(yàn)證,所以可以充分利用全部訓(xùn)練集的信息。但后剪枝的計(jì)算量代價(jià)比預(yù)剪枝方法大得多,特別是在大樣本集中,不過(guò)對(duì)于小樣本的情況,后剪枝方法還是優(yōu)于預(yù)剪枝方法的。

大數(shù)據(jù)知識(shí)點(diǎn):

一、大數(shù)據(jù)概述:1.大數(shù)據(jù)及特點(diǎn)分析;2.大數(shù)據(jù)關(guān)健技術(shù);3.大數(shù)據(jù)計(jì)算模式;4.大數(shù)據(jù)應(yīng)用實(shí)例

二、大數(shù)據(jù)處理架構(gòu)Hadoop:1.Hadoop項(xiàng)目結(jié)構(gòu);2.Hadoop安裝與使用;3.Hadoop集群的部署與使用;4.Hadoop 代表性組件

三、分布式文件系統(tǒng)HDFS :1.HDFS體系結(jié)構(gòu);2.HDFS存儲(chǔ);3.HDFS數(shù)據(jù)讀寫(xiě)過(guò)程

四、分布式數(shù)據(jù)庫(kù)HBase :1.HBase訪問(wèn)接口;2.HBase數(shù)據(jù)類型;3.HBase實(shí)現(xiàn)原理;4.HBase運(yùn)行機(jī)制;5.HBase應(yīng)用

五、MapReduce :1.MapReduce體系結(jié)構(gòu);2.MapReduce工作流程;3.資源管理調(diào)度框架YARN ;4.MapReduce應(yīng)用

六、Spark :1.Spark生態(tài)與運(yùn)行架構(gòu);2.Spark SQL;3.Spark部署與應(yīng)用方式

七、IPython Notebook運(yùn)行Python Spark程序:1.Anaconda;2.IPython Notebook使用Spark;3.使用IPython Notebook在Hadoop YARN模式運(yùn)行

八、Python Spark集成開(kāi)發(fā)環(huán)境 :1.Python Spark集成開(kāi)發(fā)環(huán)境部署配置;2.Spark數(shù)據(jù)分析庫(kù)MLlib的開(kāi)發(fā)部署

九、Python Spark決策樹(shù)二分類與多分類 :1.決策樹(shù)原理;2.大數(shù)據(jù)問(wèn)題;3.決策樹(shù)二分類;4.決策樹(shù)多分類

十、Python Spark支持向量機(jī) :1.支持向量機(jī)SVM 原理與算法;2.Python Spark SVM程序設(shè)計(jì)

十一、Python Spark 貝葉斯模型 :1.樸素貝葉斯模型原理;2.Python Spark貝葉斯模型程序設(shè)計(jì)

十二、Python Spark邏輯回歸 :1.邏輯回歸原理;2.Python Spark邏輯回歸程序設(shè)計(jì)

十三、Python Spark回歸分析 :1.大數(shù)據(jù)分析;2.數(shù)據(jù)集介紹;3.Python Spark回歸程序設(shè)計(jì)

十四、Spark ML Pipeline 機(jī)器學(xué)習(xí)流程分類 :1.機(jī)器學(xué)習(xí)流程組件:StringIndexer、OneHotEncoder、VectorAssembler等

2.使用Spark ML Pipeline 機(jī)器學(xué)習(xí)流程分類程序設(shè)計(jì)

十五、Python Spark 創(chuàng)建推薦引擎 :1.推薦算法;2.推薦引擎大數(shù)據(jù)分析使用場(chǎng)景;3.推薦引擎設(shè)計(jì)

十六、項(xiàng)目實(shí)踐:1.日志分析系統(tǒng)與日志挖掘項(xiàng)目實(shí)踐;2.推薦系統(tǒng)項(xiàng)目實(shí)踐

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 決策樹(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    96

    瀏覽量

    13552
  • 大數(shù)據(jù)
    +關(guān)注

    關(guān)注

    64

    文章

    8889

    瀏覽量

    137444
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    ADS1675最大數(shù)據(jù)吞吐率是是多少?

    ADS1675 24bit的ADC的采樣率最大是4Msps,請(qǐng)問(wèn)這款adc的最大數(shù)據(jù)吞吐率是是多少?怎么算的,在datasheet中有明確寫(xiě)出來(lái)嗎
    發(fā)表于 11-28 07:56

    智慧城市與大數(shù)據(jù)的關(guān)系

    的建設(shè)需要對(duì)海量的數(shù)據(jù)資源進(jìn)行收集、整合、存儲(chǔ)與分析。大數(shù)據(jù)技術(shù)的應(yīng)用,如智能感知、分布式存儲(chǔ)等,使得這些數(shù)據(jù)能夠被高效地處理和利用。 決策支持 : 在智慧城市的建設(shè)和運(yùn)行過(guò)程中,
    的頭像 發(fā)表于 10-24 15:27 ?666次閱讀

    LSM6DSV16X基于MLC智能筆動(dòng)作識(shí)別(2)----MLC數(shù)據(jù)采集

    MLC 是“機(jī)器學(xué)習(xí)核心”(Machine Learning Core)的縮寫(xiě)。在 LSM6DSV16X 傳感器 中,MLC 是一種嵌入式功能,它使傳感器能夠直接運(yùn)行基于決策樹(shù)的機(jī)器學(xué)習(xí)算法。通過(guò)
    的頭像 發(fā)表于 10-22 10:02 ?777次閱讀
    LSM6DSV16X基于MLC智能筆動(dòng)作識(shí)別(2)----MLC<b class='flag-5'>數(shù)據(jù)</b>采集

    使用CYW20829的BLE進(jìn)行最大數(shù)據(jù)發(fā)送應(yīng)用,BLE丟失數(shù)據(jù)如何解決?

    我目前正在使用 CYW20829 的 BLE 進(jìn)行最大數(shù)據(jù)發(fā)送應(yīng)用,我使用的是 FREERTOS(例程 Bluetooth_LE_GATT_Throughput_Server 是我的參考),藍(lán)牙被
    發(fā)表于 07-23 07:56

    大數(shù)據(jù)在軍事方面的應(yīng)用

    智慧華盛恒輝大數(shù)據(jù)在軍事方面的應(yīng)用廣泛且深入,涵蓋了戰(zhàn)爭(zhēng)決策、情報(bào)分析、裝備研發(fā)、后勤保障、科研方法、管理水平、作戰(zhàn)能力和信息化建設(shè)等多個(gè)方面。以下是對(duì)這些應(yīng)用的詳細(xì)歸納: 智慧華盛恒輝一、戰(zhàn)爭(zhēng)決策
    的頭像 發(fā)表于 07-16 09:44 ?1077次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器學(xué)習(xí)算法原理,包括線性回歸、邏輯回歸、支持向量機(jī)(SVM)、決策樹(shù)和K近鄰(KNN)算法,探討它們的理論基礎(chǔ)、算法流程、優(yōu)缺點(diǎn)及應(yīng)用場(chǎng)景
    的頭像 發(fā)表于 07-02 11:25 ?1044次閱讀

    大數(shù)據(jù)采集系統(tǒng)分為幾類

    大數(shù)據(jù)采集系統(tǒng)是大數(shù)據(jù)生態(tài)系統(tǒng)中的重要組成部分,它負(fù)責(zé)從各種數(shù)據(jù)源收集、整合和存儲(chǔ)數(shù)據(jù)。根據(jù)不同的數(shù)據(jù)源、采集方法和應(yīng)用場(chǎng)景,
    的頭像 發(fā)表于 07-01 15:44 ?1528次閱讀

    大數(shù)據(jù)在軍事方面的應(yīng)用有哪些

    智慧華盛恒輝大數(shù)據(jù)在軍事方面的應(yīng)用涵蓋了多個(gè)方面,這些應(yīng)用不僅提高了軍事管理的效率和水平,也極大地提升了軍隊(duì)的作戰(zhàn)能力和情報(bào)獲取能力。以下是大數(shù)據(jù)在軍事方面的主要應(yīng)用: 智慧華盛恒輝戰(zhàn)爭(zhēng)決策輔助
    的頭像 發(fā)表于 06-23 10:34 ?1028次閱讀

    大數(shù)據(jù)在部隊(duì)管理中的運(yùn)用有哪些

    智慧華盛恒輝大數(shù)據(jù)在部隊(duì)管理中的運(yùn)用主要體現(xiàn)在以下幾個(gè)方面: 決策支持: 智慧華盛恒輝部隊(duì)管理可以利用大數(shù)據(jù)技術(shù),對(duì)海量的數(shù)據(jù)進(jìn)行分析,為決策
    的頭像 發(fā)表于 06-23 09:53 ?1134次閱讀

    什么是隨機(jī)森林?隨機(jī)森林的工作原理

    隨機(jī)森林使用名為“bagging”的技術(shù),通過(guò)數(shù)據(jù)集和特征的隨機(jī)自助抽樣樣本并行構(gòu)建完整的決策樹(shù)。雖然決策樹(shù)基于一組固定的特征,而且經(jīng)常過(guò)擬合,但隨機(jī)性對(duì)森林的成功至關(guān)重要。
    發(fā)表于 03-18 14:27 ?3588次閱讀
    什么是隨機(jī)森林?隨機(jī)森林的工作原理

    CYBT-343026傳輸大數(shù)據(jù)時(shí)會(huì)丟數(shù)據(jù)的原因?

    我正在使用 CYBT-343026 (CYW-20706 Silicon) 模塊。 我根據(jù) SPP 樣本制作了一個(gè)操作 SPP 的應(yīng)用程序。 但是,傳輸大數(shù)據(jù)時(shí)有時(shí)會(huì)丟失數(shù)據(jù)。 它從
    發(fā)表于 03-01 15:04

    科達(dá)嘉電感器在大數(shù)據(jù)與人工智能領(lǐng)域被廣泛應(yīng)用

    近年來(lái),大數(shù)據(jù)與人工智能成為科技領(lǐng)域的熱門(mén)話題。大數(shù)據(jù)為人工智能提供了大量的數(shù)據(jù)作為輸入,使得人工智能算法和模型能夠通過(guò)學(xué)習(xí)做出更準(zhǔn)確的預(yù)測(cè)和決策
    的頭像 發(fā)表于 02-29 13:56 ?483次閱讀

    科達(dá)嘉電感器廣泛應(yīng)用于大數(shù)據(jù)及人工智能領(lǐng)域?yàn)锳I賦能

    近年來(lái),大數(shù)據(jù)與人工智能成為科技領(lǐng)域的熱門(mén)話題。大數(shù)據(jù)為人工智能提供了大量的數(shù)據(jù)作為輸入,使得人工智能算法和模型能夠通過(guò)學(xué)習(xí)做出更準(zhǔn)確的預(yù)測(cè)和決策
    的頭像 發(fā)表于 02-23 17:29 ?836次閱讀

    大數(shù)據(jù)技術(shù)是干嘛的 大數(shù)據(jù)核心技術(shù)有哪些

    大數(shù)據(jù)技術(shù)是指用來(lái)處理和存儲(chǔ)海量、多類型、高速的數(shù)據(jù)的一系列技術(shù)和工具?,F(xiàn)如今,大數(shù)據(jù)已經(jīng)滲透到各個(gè)行業(yè)和領(lǐng)域,對(duì)企業(yè)決策和業(yè)務(wù)發(fā)展起到了重要作用。本文將詳細(xì)介紹
    的頭像 發(fā)表于 01-31 11:07 ?3474次閱讀

    灌區(qū)信息化系統(tǒng)介紹(大數(shù)據(jù)分析為農(nóng)業(yè)決策提供支持)

    智慧灌區(qū)平臺(tái)由數(shù)據(jù)監(jiān)測(cè)系統(tǒng)、設(shè)備控制系統(tǒng)和決策支持系統(tǒng)三部分組成。數(shù)據(jù)監(jiān)測(cè)系統(tǒng)集成了水位計(jì)、流量計(jì)等傳感設(shè)備,實(shí)時(shí)監(jiān)測(cè)灌區(qū)的水文信息,并利用氣象站和土壤探測(cè)器監(jiān)測(cè)氣象、土壤數(shù)據(jù)。設(shè)備控
    的頭像 發(fā)表于 01-23 10:46 ?850次閱讀
    灌區(qū)信息化系統(tǒng)介紹(<b class='flag-5'>大數(shù)據(jù)</b>分析為農(nóng)業(yè)<b class='flag-5'>決策</b>提供支持)