近日,河南大學(xué)物理與電子學(xué)院白瑩教授團(tuán)隊(duì)報(bào)道了一種簡(jiǎn)單的原位修飾策略,成功地將與晶格O具有高結(jié)合能的B原子梯度摻雜進(jìn)入NCM811一次顆粒的近表面,并且同時(shí)將具有壓電特性的Li2B4O7包覆在NCM811二次顆粒的外表面,利用高鎳材料在循環(huán)過(guò)程中的應(yīng)力使Li2B4O7內(nèi)部進(jìn)一步產(chǎn)生極化電場(chǎng),進(jìn)而調(diào)控界面離子輸運(yùn)。理論計(jì)算清楚的顯示出B原子最傾向于摻雜在高鎳材料中的Li層中以LiLiLiCo環(huán)繞的四面體位置。以此模型進(jìn)行進(jìn)一步的理論計(jì)算表明,B離子的摻雜提升了高鎳材料的O空位生成能并且降低了Li離子的傳輸能壘。有限元分析結(jié)合實(shí)驗(yàn)測(cè)試顯示出Li2B4O7在NCM811表面形成了與鋰離子傳輸方向一致的極化電場(chǎng),促進(jìn)了離子的傳輸。因此,這種通過(guò)離子梯度摻雜形成的氧釋放緩沖層和壓電材料包覆在表面形成的離子輸運(yùn)調(diào)控界面層協(xié)同提升了高鎳材料的電化學(xué)性能,組裝的NCM811-LBO/LTO全電池在1000周循環(huán)后容量保持率為92.6%。該文章以In-situ Construction of Gradient Oxygen Release Buffer and Interface Cation Self-Accelerator Stabilizing High-Voltage Ni-rich Cathode為題發(fā)表在自然指數(shù)期刊、國(guó)際頂級(jí)期刊Advanced Functional Materials上,河南大學(xué)2019研究生代中盛為第一作者,河南大學(xué)趙慧玲博士和白瑩教授為共同通訊作者,中山大學(xué)盧俠教授、河南大學(xué)趙勇教授、英國(guó)倫敦大學(xué)學(xué)院何冠杰博士提供了理論計(jì)算和實(shí)驗(yàn)測(cè)試方面的幫助。
圖S1:(a) O3型NCM811的理論模型;(b) B摻雜到不同位置的相對(duì)能量。 在以往涉及B摻雜層狀材料的研究中,根據(jù)離子尺寸效應(yīng),研究者們推測(cè)B可能的摻雜位置為L(zhǎng)i層四面體和過(guò)渡金屬層四面體位置。然而,B離子摻雜的可能位置有待進(jìn)一步研究。在本工作中,以圖S1a中的O3型NCM811為理論模型,基于第一性原理的理論計(jì)算,顯示出B摻雜到Li層以LiLiLiCo環(huán)繞的四面體位置相對(duì)能量最低 (圖S1b),因此B在高鎳層狀材料中最傾向于摻雜到此位置。
圖1:(a) B元素?fù)诫s前后的NCM811模型;(b) 巴德電荷分析;(c) 氧空位形成能;(d, e)電荷態(tài)密度圖。 以圖1 a中的B摻雜進(jìn)入Li層并且以LiLiLiCo環(huán)繞的四面位置為模型,進(jìn)一步的理論計(jì)算發(fā)現(xiàn),經(jīng)過(guò)B摻雜之后O的Bader電荷值更低 (圖1b),這表明摻雜后的樣品中的晶格O更加穩(wěn)定。此外,圖1c顯示B摻雜后O的空位形成能也明顯提升,進(jìn)一步證明了B離子摻雜對(duì)晶格O的穩(wěn)定作用。
圖2:(a) 原位構(gòu)筑LBO的流程圖;(b) NCM811的截面SEM及Mapping圖;(c) HRTEM圖像;(d) TEM線掃圖像;(e-g) 深度XPS光譜(Ni,B)及歸一化圖像;(h) PFM圖像;(i, j) Ni元素的XANES和EXAFS光譜。 經(jīng)過(guò)圖2a顯示的原位構(gòu)筑過(guò)程后,截面SEM的Mapping (圖2b),TEM線掃 (圖2d),深度XPS測(cè)試 (圖2e-g)及其歸一化結(jié)果表明B原子成功的摻入材料內(nèi)部,同時(shí)圖2h的PFM測(cè)試顯示出具有壓電效應(yīng)的LBO包覆在了材料表面。此外,圖2i顯示出NCM811-LBO中的Ni的吸收光譜向低能偏移,說(shuō)明Ni元素化合價(jià)的降低,這可能是由于B摻雜到四面體位置,不占據(jù)活性元素位點(diǎn),且為了保持電荷平衡,Ni元素價(jià)態(tài)有所降低。
圖3:電化學(xué)循環(huán):(a) 首周;(b) 半電池循環(huán);(c) 倍率;(d) 全電池循環(huán);(e) 離子傳輸模型;(f) 摻雜前后的離子傳輸勢(shì)壘。 經(jīng)過(guò)LBO的原位構(gòu)筑之后,圖3a顯示改性后樣品首周容量略微提升,這是由于B摻雜到四面位置, Ni元素價(jià)態(tài)有所降低,這種分析結(jié)果和圖2中的XANES測(cè)試一致。此外,圖3b-d中的電化學(xué)測(cè)試結(jié)果顯示出改性后的高鎳材料的電化學(xué)性能明顯提升。以圖3e中B摻雜前后的材料為模型進(jìn)行離子遷移能壘的計(jì)算,中的結(jié)果表明 (圖3f),經(jīng)過(guò)B摻雜之后,NCM811-LBO的離子擴(kuò)散能壘有了明顯的降低,這將有力的促進(jìn)離子的輸運(yùn)。
圖4:(a, b) 原位XRD圖像中的(003)衍射峰;(c) 晶格常數(shù)c的變化;(d) NCM811的楊氏模量;(e) NCM811-LBO的在首周循環(huán)過(guò)程中的應(yīng)力變化;(f) NCM811體積變化最大時(shí)誘導(dǎo)LBO產(chǎn)生的極化電場(chǎng)的模擬值;(g) LBO的改性機(jī)理。 圖4a-c中的原位XRD測(cè)試結(jié)果顯示出經(jīng)過(guò)LBO的原位構(gòu)筑之后,NCM811-LBO在高電壓下晶格常數(shù)c軸的變化得到了明顯的抑制。根據(jù)原位XRD曲線計(jì)算出的應(yīng)變以及圖4d的AFM測(cè)試得到的NCM811的楊氏模量,計(jì)算了NCM811在循環(huán)過(guò)程中產(chǎn)生的應(yīng)力的變化曲線如4e所示。圖4f顯示了通過(guò)有限元分析表明了LBO在NCM811循環(huán)過(guò)程中形成了與鋰離子傳輸方向一致的極化電場(chǎng)。圖4g表明這個(gè)額外的界面極化電場(chǎng)將會(huì)起到界面離子加速器的作用加速固液(電解質(zhì)-LBO包覆層)和固固(LBO包覆層-內(nèi)層NCM811)界面離子輸運(yùn),減弱界面引離子傳輸引起的應(yīng)力。
圖5:(a, b) 原位DEMS圖像;(c, d) 原位高溫XRD光譜; (e, f) 歸一化后的晶格常數(shù)a,c。 圖5a, b的原位DEMS測(cè)試表明經(jīng)過(guò)LBO的修飾之后,高鎳材料的O2析出得到了抑制,熱穩(wěn)定性也有了明顯的提升,這得益于摻雜生成的強(qiáng)的B-O鍵,有效的降低了O的電負(fù)性,抑制了O的析出,提升了材料的結(jié)構(gòu)穩(wěn)定性。圖5c-f中的變溫XRD及其歸一化結(jié)果顯示出經(jīng)過(guò)LBO的原位構(gòu)筑以后,材料的熱穩(wěn)定性明顯增強(qiáng)。
圖6:(a, b) 原位拉曼光譜;(c, d) 歸一化后的Eg和A1g特征峰;(e, f)應(yīng)力分析。 圖6a-d進(jìn)行的原位拉曼測(cè)試及特征峰的歸一化結(jié)果進(jìn)一步顯示出改性后高鎳材料的結(jié)構(gòu)穩(wěn)定性增強(qiáng)。同時(shí),圖6e, f的有限元分析結(jié)果顯示出NCM811-LBO材料內(nèi)部的應(yīng)力積聚明顯減弱。
審核編輯:郭婷
-
鋰離子
+關(guān)注
關(guān)注
5文章
538瀏覽量
37653 -
電池
+關(guān)注
關(guān)注
84文章
10617瀏覽量
130193
原文標(biāo)題:原位構(gòu)筑的氧釋放緩沖層和界面離子加速層穩(wěn)定高壓高鎳正極
文章出處:【微信號(hào):Recycle-Li-Battery,微信公眾號(hào):鋰電聯(lián)盟會(huì)長(zhǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論