0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

結(jié)合卷積和注意機(jī)制改進(jìn)日語(yǔ)ASR

星星科技指導(dǎo)員 ? 來(lái)源:NVIDIA ? 作者:NVIDIA ? 2022-10-11 11:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

自動(dòng)語(yǔ)音識(shí)別( ASR )研究通常側(cè)重于高資源語(yǔ)言,如英語(yǔ),它由數(shù)十萬(wàn)小時(shí)的語(yǔ)音支持。最近的文獻(xiàn)重新關(guān)注更復(fù)雜的語(yǔ)言,如日語(yǔ)。與其他亞洲語(yǔ)言一樣,日語(yǔ)有大量的基本字符集(普通白話(huà)中使用了 3000 多個(gè)獨(dú)特的字符),并提出了獨(dú)特的挑戰(zhàn),例如多個(gè)詞序。

這篇文章討論了最近提高日語(yǔ) ASR 準(zhǔn)確性和速度的工作。首先,我們改進(jìn)了 Conformer ,這是一種最先進(jìn)的 ASR 神經(jīng)網(wǎng)絡(luò)架構(gòu),在訓(xùn)練和推理速度方面取得了顯著的改進(jìn),并且沒(méi)有精度損失。其次,我們?cè)鰪?qiáng)了一個(gè)具有多頭部自我注意機(jī)制的純深度卷積網(wǎng)絡(luò),以豐富輸入語(yǔ)音波形的全局上下文表示的學(xué)習(xí)。

語(yǔ)音識(shí)別中的深度稀疏整合器

Conformer 是一種神經(jīng)網(wǎng)絡(luò)體系結(jié)構(gòu),廣泛應(yīng)用于多種語(yǔ)言的 ASR 系統(tǒng)中,并取得了較高的精度。然而, Conformer 在訓(xùn)練和推斷方面都相對(duì)較慢,因?yàn)樗褂昧硕囝^自我注意,對(duì)于輸入音頻波的長(zhǎng)度,其時(shí)間/內(nèi)存復(fù)雜度為 quadratic 。

這妨礙了它對(duì)長(zhǎng)音頻序列的高效處理,因?yàn)樵谟?xùn)練和推斷過(guò)程中需要相對(duì)較高的內(nèi)存占用。這些激勵(lì)了稀疏 關(guān)注高效 Conformer 構(gòu)建。此外,由于注意力較少,內(nèi)存成本相對(duì)較低,我們能夠構(gòu)建一個(gè)更深的網(wǎng)絡(luò),可以處理由大規(guī)模語(yǔ)音數(shù)據(jù)集提供的長(zhǎng)序列。

poYBAGNE33uAXpAvAAFV8xf3Mrw161.png

圖 1.深度稀疏 Conformer 的編碼器模型架構(gòu)

如圖 1 所示,我們?cè)趦蓚€(gè)方向上改進(jìn)了 Conformer 長(zhǎng)序列表示能力:稀疏和深入。我們使用一個(gè)排名標(biāo)準(zhǔn),只選擇一小部分占主導(dǎo)地位的查詢(xún),而不是整個(gè)查詢(xún)集,以節(jié)省計(jì)算注意力得分的時(shí)間。

在執(zhí)行剩余連接時(shí),使用深度規(guī)范化策略,以確保百級(jí) Conformer 塊的訓(xùn)練。該策略包括使用一個(gè)函數(shù)來(lái)貼現(xiàn)編碼器和解碼器部分的參數(shù),該函數(shù)分別與編碼器層和解碼器層的數(shù)量相關(guān)。

此外,這種深度規(guī)范化策略可確保成功構(gòu)建 10 到 100 層,從而使模型更具表現(xiàn)力。相比之下,與普通 Conformer 相比,深度稀疏 Conformer 的時(shí)間和內(nèi)存成本降低了 10% 到 20% 。

用于語(yǔ)音識(shí)別的注意力增強(qiáng)型 Citrinet

NVIDIA 研究人員提出的 Citrinet 是一種基于端到端卷積連接時(shí)態(tài)分類(lèi)( CTC )的 ASR 模型。為了捕獲本地和全局上下文信息, Citrinet 使用 1D 時(shí)間通道可分離卷積與子字編碼、壓縮和激勵(lì)( SE )相結(jié)合,使整個(gè)體系結(jié)構(gòu)與基于變壓器的同類(lèi)產(chǎn)品相比達(dá)到最先進(jìn)的精度。

將 Citrinet 應(yīng)用于日本 ASR 涉及幾個(gè)挑戰(zhàn)。具體來(lái)說(shuō),與類(lèi)似的深度神經(jīng)網(wǎng)絡(luò)模型相比,它的收斂速度相對(duì)較慢,并且更難訓(xùn)練出具有類(lèi)似精度的模型??紤]到影響 Citrinet 收斂速度的卷積層多達(dá) 235 個(gè),我們旨在通過(guò)在 Citrinet 塊的卷積模塊中引入多頭部注意來(lái)減少 CNN 層,同時(shí)保持 SE 和剩余模塊不變。

poYBAGNE33uACWamAAJDT3W-FoI267.png

圖 2.Citrinet 端到端架構(gòu)和主要構(gòu)建塊

如圖 2 所示,加快訓(xùn)練時(shí)間需要在每個(gè)注意力增強(qiáng)的 Citrinet 塊中減少八個(gè)卷積層。此外,考慮到自我注意對(duì)輸入音頻波的長(zhǎng)度具有二次 的時(shí)間/記憶復(fù)雜性,我們將原來(lái)的 23 個(gè) Jasper 塊縮減為 8 個(gè)塊,模型尺寸顯著減小。這種設(shè)計(jì)確保了注意力增強(qiáng)的 Citrinet 對(duì)于從 20 秒到 100 秒的長(zhǎng)語(yǔ)音序列達(dá)到了可比的推理時(shí)間。

初步實(shí)驗(yàn)表明,基于注意力的模型收斂于 100 到 200 個(gè)時(shí)間點(diǎn),而 Citrinet 收斂到最佳錯(cuò)誤率需要 500 到 1000 個(gè)時(shí)間點(diǎn)。在日本 CSJ-500-hour 數(shù)據(jù)集上的實(shí)驗(yàn)表明,與 Citrinet ( 80% 的訓(xùn)練時(shí)間)和 Conformer ( 40% 的訓(xùn)練時(shí)間和 18.5% 的模型大?。┫啾?, Citrinet 的注意力需要更少的塊層,收斂速度更快,字符錯(cuò)誤率更低。

總結(jié)

通常,我們提出兩種新的架構(gòu)來(lái)構(gòu)建端到端的日本 ASR 模型。在一個(gè)方向上,我們改進(jìn)了基于變壓器的 Conformer 訓(xùn)練和推斷速度,并保持了其準(zhǔn)確性。我們成功地構(gòu)建了更稀疏和更深入的 Conformer 模型。我們還通過(guò)引入多頭部自我注意機(jī)制和修剪 80% 的 CNN 層,提高了基于 CNN 的 Citrinet 收斂速度和準(zhǔn)確性。這些建議是通用的,適用于其他亞洲語(yǔ)言。

關(guān)于作者

吳顯超博士是 NVIDIA 的高級(jí)解決方案架構(gòu)師。他專(zhuān)注于語(yǔ)音處理和自然語(yǔ)言處理的研究領(lǐng)域。他支持客戶(hù)在 NVIDIA SDK (如威震天 LM 、 NeMo 和 Riva )下構(gòu)建大規(guī)模預(yù)處理模型和對(duì)話(huà)人工智能平臺(tái)。

Somshubra Majumdar 是 NVIDIA NeMo 工具包的資深研究科學(xué)家。他于 2016 年獲得孟買(mǎi)大學(xué)計(jì)算機(jī)工程學(xué)士學(xué)位, 2018 年獲得芝加哥伊利諾伊大學(xué)計(jì)算機(jī)科學(xué)碩士學(xué)位。他的研究興趣包括自動(dòng)語(yǔ)音識(shí)別、語(yǔ)音分類(lèi)、時(shí)間序列分類(lèi)和深度學(xué)習(xí)的實(shí)際應(yīng)用。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 編碼器
    +關(guān)注

    關(guān)注

    45

    文章

    3787

    瀏覽量

    137696
  • 語(yǔ)音識(shí)別
    +關(guān)注

    關(guān)注

    39

    文章

    1779

    瀏覽量

    114101
  • ASR
    ASR
    +關(guān)注

    關(guān)注

    2

    文章

    44

    瀏覽量

    19095
收藏 0人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

    神經(jīng)網(wǎng)絡(luò)已經(jīng)廣泛應(yīng)用于圖像分類(lèi)、目標(biāo)檢測(cè)、語(yǔ)義分割以及自然語(yǔ)言處理等領(lǐng)域。首先分析了典型卷積神經(jīng)網(wǎng)絡(luò)模型為提高其性能增加網(wǎng)絡(luò)深度以及寬度的模型結(jié)構(gòu),分析了采用注意機(jī)制進(jìn)一步提升模型性能的網(wǎng)絡(luò)結(jié)構(gòu),然后歸納
    發(fā)表于 08-02 10:39

    μC/OS-II 任務(wù)調(diào)度機(jī)制改進(jìn)

    介紹μC/OS-II 任務(wù)調(diào)度機(jī)制,并提出一種改進(jìn)方法,使μC/OS-II變成一個(gè)兼?zhèn)鋵?shí)時(shí)與分時(shí)任務(wù)調(diào)度機(jī)制的操作系統(tǒng); 論述改進(jìn)后系統(tǒng)的特點(diǎn)和要
    發(fā)表于 04-15 11:21 ?14次下載

    Snort匹配機(jī)制改進(jìn)

    基于規(guī)則的模式匹配是Snort 檢測(cè)引擎的主要機(jī)制,本文在結(jié)合協(xié)議分析和模式匹配的基礎(chǔ)上,對(duì)Snort 匹配機(jī)制進(jìn)行了改進(jìn)。首先對(duì)從網(wǎng)絡(luò)中獲取的數(shù)據(jù)包進(jìn)行預(yù)先處理,利用協(xié)議分
    發(fā)表于 12-18 17:35 ?14次下載

    維納濾波反卷積算法的改進(jìn)

    應(yīng)用于相關(guān)辨識(shí)中的維納濾波反卷積算法對(duì)噪聲的適應(yīng)性不理想,辨識(shí)效果不佳。據(jù)此分析了維納濾波反卷積算法在對(duì)大地辨識(shí)的過(guò)程中對(duì)噪聲適應(yīng)性不理想的原因,并提出了相應(yīng)的改進(jìn)算法:根據(jù)檢測(cè)系統(tǒng)沖激響應(yīng)的頻譜
    發(fā)表于 11-16 11:01 ?11次下載

    卷積神經(jīng)網(wǎng)絡(luò)的權(quán)值反向傳播機(jī)制和MATLAB的實(shí)現(xiàn)方法

    降低了網(wǎng)絡(luò)需要訓(xùn)練的數(shù)量級(jí)。本文以MINST手寫(xiě)體數(shù)據(jù)庫(kù)為訓(xùn)練樣本,討論卷積神經(jīng)網(wǎng)絡(luò)的權(quán)值反向傳播機(jī)制和MATLAB的實(shí)現(xiàn)方法;對(duì)激活函數(shù)tanh和relu梯度消失問(wèn)題進(jìn)行分析和優(yōu)化,對(duì)改進(jìn)后的激活函數(shù)進(jìn)行訓(xùn)練,得出最優(yōu)的修正參
    發(fā)表于 12-06 15:29 ?14次下載

    卷積神經(jīng)網(wǎng)絡(luò)的七個(gè)注意事項(xiàng)

    卷積神經(jīng)網(wǎng)絡(luò)的七個(gè)注意事項(xiàng)
    的頭像 發(fā)表于 08-24 16:09 ?4149次閱讀

    結(jié)合改進(jìn)Fisher判別準(zhǔn)則與GRV模塊的卷積神經(jīng)網(wǎng)絡(luò)

    傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)(CNN)在建模過(guò)程中由于數(shù)據(jù)樣本量不足容易岀現(xiàn)過(guò)擬合現(xiàn)象,且對(duì)隨機(jī)數(shù)據(jù)泛化能力較差。為此,設(shè)計(jì)一種結(jié)合改進(jìn) Fisher判別準(zhǔn)則與GRⅤ模塊的卷積神經(jīng)網(wǎng)絡(luò)( FDCN
    發(fā)表于 03-17 11:11 ?4次下載
    <b class='flag-5'>結(jié)合</b><b class='flag-5'>改進(jìn)</b>Fisher判別準(zhǔn)則與GRV模塊的<b class='flag-5'>卷積</b>神經(jīng)網(wǎng)絡(luò)

    基于通道注意機(jī)制的SSD目標(biāo)檢測(cè)算法

    為提升原始SSD算法的小目標(biāo)檢測(cè)精度及魯棒性,提出一種基于通道注意機(jī)制的SSD目標(biāo)檢測(cè)算法。在原始SSD算法的基礎(chǔ)上對(duì)高層特征圖進(jìn)行全局池化操作,結(jié)合通道注意
    發(fā)表于 03-25 11:04 ?20次下載

    結(jié)合注意機(jī)制改進(jìn)深度學(xué)習(xí)光流網(wǎng)絡(luò)

    為提升基于編解碼架構(gòu)的U型網(wǎng)絡(luò)在深度學(xué)習(xí)光流估計(jì)中的精度,提岀了一種結(jié)合注意機(jī)制改進(jìn)有監(jiān)督深度學(xué)習(xí)光流網(wǎng)絡(luò)。網(wǎng)絡(luò)由收縮和擴(kuò)張兩部分組成,收縮部分利用一系列
    發(fā)表于 04-07 13:56 ?4次下載
    <b class='flag-5'>結(jié)合</b><b class='flag-5'>注意</b>力<b class='flag-5'>機(jī)制</b>的<b class='flag-5'>改進(jìn)</b>深度學(xué)習(xí)光流網(wǎng)絡(luò)

    基于循環(huán)卷積注意力模型的文本情感分類(lèi)方法

    和全局信息。文中針對(duì)單標(biāo)記和多標(biāo)記情感分類(lèi)任務(wù),提出一種循環(huán)卷積注意力模型( LSTM-CNN-ATT,LCA)。該模型利用注意機(jī)制融合卷積
    發(fā)表于 04-14 14:39 ?10次下載
    基于循環(huán)<b class='flag-5'>卷積</b><b class='flag-5'>注意</b>力模型的文本情感分類(lèi)方法

    結(jié)合注意機(jī)制的跨域服裝檢索方法

    針對(duì)跨域服裝檢索中服裝商品圖像拍攝嚴(yán)格約束光照、背景等條件,而用戶(hù)圖像源自復(fù)雜多變的日常生活場(chǎng)景,難以避免背景干擾以及視角、姿態(tài)引起的服裝形變等問(wèn)題。提出一種結(jié)合注意機(jī)制的跨域服裝檢索方法。利用
    發(fā)表于 05-12 14:19 ?2次下載

    改進(jìn)膠囊網(wǎng)絡(luò)優(yōu)化分成卷積的亞健康識(shí)別

    針對(duì)傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)(CNN)為獲得高準(zhǔn)確率不斷堆疊卷積層、池化層致使模型結(jié)構(gòu)復(fù)雜、訓(xùn)練時(shí)間長(zhǎng)且數(shù)據(jù)處理方式單一的問(wèn)題,提出改進(jìn)膠囊網(wǎng)絡(luò)優(yōu)化分層卷積的亞健康識(shí)別算法。首先,對(duì)原始振動(dòng)數(shù)
    發(fā)表于 06-03 16:16 ?7次下載

    計(jì)算機(jī)視覺(jué)中的注意機(jī)制

    計(jì)算機(jī)視覺(jué)中的注意機(jī)制 卷積神經(jīng)網(wǎng)絡(luò)中常用的Attention 參考 注意機(jī)制簡(jiǎn)介與分類(lèi) 注意
    發(fā)表于 05-22 09:46 ?1次下載
    計(jì)算機(jī)視覺(jué)中的<b class='flag-5'>注意</b>力<b class='flag-5'>機(jī)制</b>

    一種基于因果路徑的層次圖卷積注意力網(wǎng)絡(luò)

    機(jī)電系統(tǒng)中數(shù)據(jù)驅(qū)動(dòng)故障檢測(cè)模型的性能和可解釋性。引入了一種混合因果發(fā)現(xiàn)算法來(lái)發(fā)現(xiàn)監(jiān)測(cè)變量之間的繼承因果關(guān)系。順序連接因果變量的因果路徑用作接收?qǐng)?,使用多尺?b class='flag-5'>卷積來(lái)提取特征?;诜謱?b class='flag-5'>注意機(jī)制來(lái)聚合
    的頭像 發(fā)表于 11-12 09:52 ?1026次閱讀
    一種基于因果路徑的層次圖<b class='flag-5'>卷積</b><b class='flag-5'>注意</b>力網(wǎng)絡(luò)

    ASR與自然語(yǔ)言處理的結(jié)合

    ASR(Automatic Speech Recognition,自動(dòng)語(yǔ)音識(shí)別)與自然語(yǔ)言處理(NLP)是人工智能領(lǐng)域的兩個(gè)重要分支,它們?cè)谠S多應(yīng)用中緊密結(jié)合,共同構(gòu)成了自然語(yǔ)言理解和生成的技術(shù)體系
    的頭像 發(fā)表于 11-18 15:19 ?986次閱讀

    電子發(fā)燒友

    中國(guó)電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品