01
研究背景
共軛聚合物具有固有的離域電子、豐富的結(jié)構(gòu)組成和可調(diào)的官能團(tuán),從而在催化、儲(chǔ)能、氣體敏感傳感器以及生物醫(yī)學(xué)等領(lǐng)域引起了人們的極大關(guān)注。通過構(gòu)建具有有序介孔的納米結(jié)構(gòu)可以賦予它們在大表面積,豐富的極性官能團(tuán),可調(diào)的孔徑和獨(dú)特的介觀/納米結(jié)構(gòu)方面的優(yōu)勢,從而提高其在不同領(lǐng)域的應(yīng)用潛力。雖然介孔材料領(lǐng)域迄今已有長足的發(fā)展,但普遍使用的單一類型膠束的導(dǎo)向策略只能得到孔陣列的均勻性和各向同性納米結(jié)構(gòu),這將不利于開發(fā)它們在不同領(lǐng)域的應(yīng)用。因此,通過合理的分子設(shè)計(jì)和處理,引入非共價(jià)效應(yīng)(如π-π堆疊、配位、主客體、偶極耦合等)來控制分子實(shí)現(xiàn)自組裝,并結(jié)合外部膠束的共組裝,有望在分子水平上自下而上實(shí)現(xiàn)具有分級(jí)結(jié)構(gòu)多孔材料的構(gòu)建及其新穎性能的開發(fā),可以對(duì)自組裝化學(xué)和新材料開發(fā)提供有益的借鑒。
02
成果展示
最近,華東師范大學(xué)劉少華課題組首次采用串聯(lián)多級(jí)自組裝策略,將超分子相互作用引入介孔材料的自下而上構(gòu)建中,從而實(shí)現(xiàn)了前所未有的具有異構(gòu)納米結(jié)構(gòu)的介孔共軛聚合物材料。得益于其π共軛介孔結(jié)構(gòu)和豐富的極性化學(xué)官能團(tuán),多硫化物與該介孔共軛聚合物之間表現(xiàn)出較強(qiáng)的吸附作用。因此,使用該介孔共軛聚合物的作為中間層應(yīng)用于Li-S電池,其電化學(xué)穩(wěn)定性和倍率性能得到顯著提升。
03
圖文導(dǎo)讀
▲圖1. 四苯胺基芘分子的自組裝機(jī)制
單體的官能團(tuán)設(shè)計(jì)是構(gòu)建新型超分子組件的關(guān)鍵。1,3,6,8-四-(對(duì)胺基苯基)-芘(PyTTA)分子的中心有一個(gè)芘單元,尾端有四個(gè)氨基單元(圖1a),這使得單體作為構(gòu)建塊由π-π堆疊的非共價(jià)效應(yīng)以及氫鍵相互作用驅(qū)動(dòng)來實(shí)現(xiàn)緊密堆疊成超分子組裝體的潛力。在這項(xiàng)研究中,我們發(fā)現(xiàn)稀鹽酸溶液可以首先很好地溶解PyTTA,然后在超聲波能量供應(yīng)的幫助下發(fā)生自發(fā)自組裝。PyTTA單體的H型聚集體的形成在能量交換方面可分為兩個(gè)階段(圖1e)。首先,PyTTA單體需要跨越一個(gè)能量屏障來扭轉(zhuǎn)四個(gè)苯胺基團(tuán)使得結(jié)構(gòu)平面化,并在成核過程中產(chǎn)生穩(wěn)定的臨界核(Hx)。之后,一旦Hx在組裝過程中形成,它可以作為初始種子源,在自催化下實(shí)現(xiàn)爆炸性生長和伸長(Hn)(n《x; n= 2, 3, 。.., x-1)。因此,這種重建過程可以通過具有改變構(gòu)型和增強(qiáng)的π-π相互作用的單分子來降低系統(tǒng)能量,從而獲得熱力學(xué)穩(wěn)定的H型聚集體(Hn)(n》x; n= x,x + 1,。..)。
▲圖2. 四苯胺基芘超分子組裝體的結(jié)構(gòu)表征
PyTTA超分子組裝體的SEM圖像清楚地揭示了其纖維狀形態(tài)。TEM圖像進(jìn)一步顯示了密集堆積和高度取向的纖維束。沿長度方向明顯觀察到組件的晶格條紋,表明其在分子水平上高度有序的堆疊,其頂視圖的晶格間距為1.31 nm(圖2b,c),表明組裝體的排列模式符合其π-π堆疊方向并平行于縱向方向。兩個(gè)相鄰的PyTTA分子平面之間的堆疊距離為3.2 ?,氨基通過氫鍵構(gòu)建以邊緣到邊緣的方式與相鄰的PyTTA分子互連。另外,平行堆疊的PyTTA超分子組裝體暴露的氨基可以作為固相界面,通過氫鍵支持和誘導(dǎo)與膠束共組裝,這將在下一部分進(jìn)行討論。
▲圖3. 超分子與膠束的協(xié)調(diào)組裝調(diào)控
受上述探索啟發(fā),我們將PyTTA自組裝體與兩親膠束順序共組裝相結(jié)合, 用于構(gòu)建共軛介孔聚合物。通過在乙醇/水/甲苯體系中的強(qiáng)氫鍵支持和誘導(dǎo)PyTTA和膠束的共組裝。經(jīng)過氧化聚合,獲得了介孔異質(zhì)聚四苯胺基芘纖維(mPPyTTAs-NF)。需要指出的是,共組裝過程涉及相互競爭,纖維狀超分子組裝體的聚集將受到阻礙,因?yàn)樵诘蚉yTTA濃度下膠束完全占據(jù)空間限制和氫鍵(圖3b)。因此,當(dāng)溶液被稀釋時(shí),單體充分吸附在膠束表面,抑制單體之間的π-π堆積,有利于球狀復(fù)合納米乳液的形成。
▲圖4. 介孔異質(zhì)聚四苯胺基芘纖維對(duì)多硫化物的吸附表征
考慮到mPPyTTAs-NF的極性化學(xué)結(jié)構(gòu)和有序介孔形貌,充分滿足Li-S電池作為優(yōu)良中間層材料的要求。mPPyTTA-NF均勻交織分布和豐富的極性官能團(tuán),這將有利于通過物理阻擋和化學(xué)鍵合來抑制穿梭效應(yīng)。通過玻璃瓶中對(duì)多硫化物進(jìn)行可視化吸附表征,碳納米管(CNT)用作具有非極性結(jié)構(gòu)的對(duì)比材料。多硫化物溶液在mPPyTTA-NF中表現(xiàn)出更明顯地脫色,這意味著mPPyTTA-NF對(duì)多硫化物具有很強(qiáng)的錨定作用。圖5c中的元素映射進(jìn)一步精確地顯示了S元素的均勻分布,與C和N的元素分布區(qū)域相同。mPPyTTA-NF豐富的孔隙結(jié)構(gòu)賦予了活性位點(diǎn)的暴露,從而實(shí)現(xiàn)更高效的對(duì)多硫化物化學(xué)捕捉。
▲圖5. 介孔異質(zhì)聚四苯胺基芘纖維在鋰硫電池中的電化學(xué)性能
最后,我們分別對(duì)使用mPPyTTA-NF/CNT和CNT (碳納米管)中間層的鋰硫電池的電化學(xué)性能進(jìn)行了評(píng)價(jià)。首先,通過CV曲線計(jì)算了氧化還原過程的相應(yīng)塔菲爾斜率(圖S22),結(jié)果表明使用mPPyTTA-NF/CNT中間層的鋰硫電池的塔菲爾斜率最低,表明對(duì)多硫化物轉(zhuǎn)化的有效催化作用。mPPyTTA-NF/CNT顯示出比碳納米管(126 mAh g?1)更高的Li2S電化學(xué)沉積能力(258 mAh g?1)(圖S23),這表明摻入mPPyTTA-NF/CNT可以加速多硫化物與Li2S反應(yīng)的反應(yīng)動(dòng)力學(xué)。另外,測試了mPPyTTA-NF/CNT和CNT (碳納米管)中間層的Li-S電池的長壽命循環(huán)特性。其中,mPPyTTA-NF/CNT中間層的Li-S電池在循環(huán)過程中顯示出比使用CNT (碳納米管)中間層更高的放電比容量和循環(huán)穩(wěn)定性(圖7h),進(jìn)一步表明其對(duì)多硫化物優(yōu)秀的吸附和轉(zhuǎn)化行為。
04
結(jié)論與展望
綜上所述,我們通過引入單體本身的超分子相互作用以及外部膠束自組裝,成功地實(shí)現(xiàn)了串聯(lián)多級(jí)分子組裝,從而制備了新型芘基介孔異質(zhì)共軛聚合物。這種方法克服了以前制備介孔材料的單模板方法的局限性。獲得的mPPyTTA-NF具有豐富的官能團(tuán)、有序的介孔納米結(jié)構(gòu)和增強(qiáng)的電子導(dǎo)電性。理論模擬和廣泛的實(shí)驗(yàn)研究表明,mPPyTTA-NF可以有效地固定和催化多硫化物轉(zhuǎn)化。受益于這些優(yōu)勢,mPPyTTA-NF作為Li-S電池的中間層,表現(xiàn)出優(yōu)秀的循環(huán)性能和倍率性能。鑒于其可擴(kuò)展性,該策略將單體本身的超分子相互作用與外部膠束自組裝相結(jié)合,將打破構(gòu)建介孔材料和多孔聚合物的新途徑,具有獨(dú)特的納米結(jié)構(gòu),以實(shí)現(xiàn)更為廣泛的應(yīng)用。
-
傳感器
+關(guān)注
關(guān)注
2551文章
51106瀏覽量
753667 -
納米管
+關(guān)注
關(guān)注
0文章
33瀏覽量
11921 -
電池
+關(guān)注
關(guān)注
84文章
10576瀏覽量
129717
原文標(biāo)題:華東師大劉少華團(tuán)隊(duì)ESM:有序介孔共軛聚合物異構(gòu)體的串聯(lián)多級(jí)自組裝構(gòu)建及其用于Li-S電池的高性能
文章出處:【微信號(hào):Recycle-Li-Battery,微信公眾號(hào):鋰電聯(lián)盟會(huì)長】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評(píng)論請先 登錄
相關(guān)推薦
評(píng)論