傳感器多種多樣,玲瑯滿目,可供我們選擇的有很多。電感渦流傳感器等眾多高性能傳感器,被大量應(yīng)用在各行各業(yè)。特別是機(jī)床行業(yè),以及汽車制造等行業(yè)更是應(yīng)用廣泛,是國內(nèi)外公認(rèn)的具有發(fā)展前途的高技術(shù)產(chǎn)業(yè)。
電渦流傳感器工作原理
電渦流效應(yīng)
電渦流傳感器是根據(jù)電渦流效應(yīng)進(jìn)行工作的,即利用金屬導(dǎo)體置于變化的磁場中,產(chǎn)生感應(yīng)電流,從而在金屬體內(nèi)形成自行閉合的電渦流線,這種現(xiàn)象稱為電渦流效應(yīng)。
電渦流傳感器結(jié)構(gòu)及特性
傳感元件:電渦流探頭
電渦流探頭是一個(gè)固定在框架上的扁平線圈,激勵源頻率較高(數(shù)十千赫至數(shù)兆赫)。
傳感器探頭里有小型線圈,由控制器控制產(chǎn)生震蕩電磁場,當(dāng)接近被測體時(shí),被測體表面會產(chǎn)生感應(yīng)電流,而產(chǎn)生反向的電磁場。這時(shí)電渦流傳感器根據(jù)反向電磁場的強(qiáng)度來判斷與被測體之間的距離。注意:電渦流傳感器要求被測體必須是導(dǎo)體。
1—電渦流線圈 2—探頭殼體 3—?dú)んw上的位置調(diào)節(jié)螺紋
4—印制線路板 5—夾持螺母 6—電源指示燈
7—閾值指示燈 8—輸出屏蔽電纜線 9—電纜插頭
電渦流位移傳感器測量技術(shù)的歷史
最先發(fā)現(xiàn)電渦流現(xiàn)象的是Fran?ois Arago (1786–1853),第25任法國總統(tǒng),數(shù)學(xué)家,物理學(xué)家和天文學(xué)家。1824年,他率先發(fā)現(xiàn)并命名旋轉(zhuǎn)磁場,以及絕大多數(shù)導(dǎo)體均可以被磁化。他的發(fā)現(xiàn)后來被Michael Faraday (1791–1867) 整理和最終完善。
1834年,Heinrich Lenz發(fā)布了楞次定律,感應(yīng)電流具有這樣的方向,即感應(yīng)電流的磁場總要阻礙引起感應(yīng)電流的磁通量的變化。
法國物理學(xué)家Léon Foucault (1819–1868)于1855年發(fā)現(xiàn),在磁場兩級中間,旋轉(zhuǎn)銅制圓盤所需要的力更大,于此同時(shí),銅制圓盤受內(nèi)部感生電渦流的作用而發(fā)熱。
1879年David E. Hughes率先采用渦流技術(shù)進(jìn)行了非接觸測量,用于分揀金屬被測物。
1980年,德國米銥公司率先將電渦流位移傳感器用于工業(yè)生產(chǎn)環(huán)節(jié)檢測
1988年,德國米銥公司發(fā)布了全球最小尺寸電渦流位移傳感器,使得在安裝空間受限的情況下,也可以采用電渦流原理獲得精準(zhǔn)的測量數(shù)據(jù)。
電渦流傳感器的優(yōu)點(diǎn)
1、渦流傳感器是一種非接觸的線性化計(jì)量工具,能靜態(tài)和動態(tài)地非接觸、高線性度、高分辨力地測量被測金屬導(dǎo)體距探頭表面的距離。電渦流傳感器在測量過程中測量準(zhǔn)確性會受到一定的影響。
2、傳感器特性與被測體的電導(dǎo)率時(shí),由于渦流效應(yīng)和磁效應(yīng)同時(shí)存在,磁效應(yīng)反作用于渦流效應(yīng),使得渦流效應(yīng)減弱,即傳感器的靈敏度降低。而當(dāng)被測體為弱導(dǎo)磁材料(如銅,鋁,合金鋼等)時(shí),由于磁效應(yīng)弱,相對來說渦流效應(yīng)要強(qiáng),因此傳感器感應(yīng)靈敏度要高。
3、不規(guī)則的被測體表面,會給實(shí)際的測量帶來附加誤差,因此對被測體表面應(yīng)該平整光滑,不應(yīng)存在凸起、洞眼、刻痕、凹槽等缺陷。一般要求,對于振動測量的被測表面粗糙度要求在0.4um~0.8um之間;對于位移測量被測表面粗糙度要求在0.4um~1.6um之間。
4、電渦流效應(yīng)主要集中在被測體表面,如果由于加工過程中形成殘磁效應(yīng),以及淬火不均勻、硬度不均勻、金相組織不均勻、結(jié)晶結(jié)構(gòu)不均勻等都會影響傳感器特性。在進(jìn)行振動測量時(shí),如果被測體表面殘磁效應(yīng)過大,會出現(xiàn)測量波形發(fā)生畸變。
電渦流傳感器的分類
按照電渦流在導(dǎo)體內(nèi)的貫穿情況,此傳感器可分為高頻反射式和低頻透射式兩類,但從基本工作原理上來說仍是相似的。
高頻反射式電渦流傳感器
高頻(>lMHz)激勵電流,產(chǎn)生的高頻磁場作用于金屬板的表面,由于集膚效應(yīng),在金屬板表面將形成渦電流。與此同時(shí),該渦流產(chǎn)生的交變磁場又反作用于線圈,引起線圈自感L或阻抗ZL的變化,其變化與距離、金屬板的電阻率ρ、磁導(dǎo)率μ、激勵電流i,及角頻率ω等有關(guān),若只改變距離δ而保持其他系數(shù)不變,則可將位移的變化轉(zhuǎn)換為線圈自感的變化,通過測量電路轉(zhuǎn)換為電壓輸出。高頻反射式渦流傳感器多用于位移測量。
低頻透射式電渦流傳感器
低頻透射式渦流傳感器多用于測定材料厚度。發(fā)射線圈W1和接收線圈W2分別放在被測材料G的上下,低頻電壓e1加到線圈W1的兩端后,在周圍空間產(chǎn)生一交變磁場,并在被測材料G中產(chǎn)生渦流i,此渦流損耗了部分能量,使貫穿W2的磁力線減少,從而使W2產(chǎn)生的感應(yīng)電勢e2減小。e2的大小與G的厚度及材料性質(zhì)有關(guān),實(shí)驗(yàn)證明,e2隨材料厚度h增加按負(fù)指數(shù)規(guī)律減小。因而按e2的變化便可測得材料的厚度。
電渦流式傳感器的測量電路
利用電渦流式變換元件進(jìn)行測量時(shí),為了得到較強(qiáng)的電渦流效應(yīng),通常激磁線圈工作在較高頻率下,所以信號轉(zhuǎn)換電路主要有調(diào)幅電路和調(diào)頻電路兩種。
調(diào)幅式(AM)電路
調(diào)頻式(FM)電路
當(dāng)電渦流線圈與被測體的距離x改變時(shí),電渦流線圈的電感量L也隨之改變,引起LC振蕩器的輸出頻率變化,此頻率可直接用計(jì)算機(jī)測量。
電渦流傳感器的應(yīng)用
電渦流傳感器系統(tǒng)廣泛應(yīng)用于電力、石油、化工、冶金等行業(yè)和一些科研單位。對汽輪機(jī)、水輪機(jī)、鼓風(fēng)機(jī)、壓縮機(jī)、空分機(jī)、齒輪箱、大型冷卻泵等大型旋轉(zhuǎn)機(jī)械軸的徑向振動、軸向位移、鍵相器、軸轉(zhuǎn)速、脹差、偏心、以及轉(zhuǎn)子動力學(xué)研究和零件尺寸檢驗(yàn)等進(jìn)行在線測量和保護(hù)。
1、在工業(yè)設(shè)備上的應(yīng)用
軸向位移測量
對于許多旋轉(zhuǎn)機(jī)械,包括蒸汽輪機(jī)、燃汽輪機(jī)、水輪機(jī)、離心式和軸流式壓縮機(jī)、離心泵等,軸向位移是一個(gè)十分重要的信號,過大的軸向位移將會引起過大的機(jī)構(gòu)損壞。軸向位移的測量,可以指示旋轉(zhuǎn)部件與固定部件之間的軸向間隙或相對瞬時(shí)的位移變化,用以防止機(jī)器的破壞。
軸向位移是指機(jī)器內(nèi)部轉(zhuǎn)子沿軸心方向,相對于止推軸承二者之間的間隙而言。有些機(jī)械故障,也可通過軸向位移的探測,進(jìn)行判別:1、止推軸承的磨損與失效;2、平衡活塞的磨損與失效;3、止推法蘭的松動;4、 聯(lián)軸節(jié)的鎖住等。
軸向位移(軸向間隙)的測量,經(jīng)常與軸向振動弄混。軸向振動是指傳感器探頭表面與被測體,沿軸向之間距離的快速變動,這是一種軸的振動,用峰峰值表示。它與平均間隙無關(guān)。有些故障可以導(dǎo)致軸向振動。例如壓縮機(jī)的踹振和不對中即是。
振動測量
測量徑向振動,可以由它看到軸承的工作狀態(tài),還可以看到轉(zhuǎn)子的不平衡,不對中等機(jī)械故障??梢蕴峁τ谙铝嘘P(guān)鍵或基礎(chǔ)機(jī)械進(jìn)行機(jī)械狀態(tài)監(jiān)測所需要的信息:1、工業(yè)透平,蒸汽/燃汽;2、壓縮機(jī),空氣/特殊用途氣體,徑向/軸向;3、膨脹機(jī);4、動力發(fā)電透平,蒸汽/燃汽/水利;5、電動馬達(dá)、發(fā)電機(jī) ;6、勵磁機(jī);7、齒輪箱;8、泵;9、風(fēng)扇、風(fēng)機(jī);10、往復(fù)式機(jī)械。
振動測量同樣可以用于對一般性的小型機(jī)械進(jìn)行連續(xù)監(jiān)測。可為如下各種機(jī)械故障的早期判別提供了重要信息:
1、軸的同步振動,油膜失穩(wěn);
2、轉(zhuǎn)子摩擦,部件松動;
3、軸承套筒松動,壓縮機(jī)踹振;
4、滾動部件軸承失效,徑向預(yù)載,內(nèi)部/外部包括不對中;
5、軸承巴氏合金磨損,軸承間隙過大,徑向/軸向;
6、平衡(阻氣)活塞磨損/失效 ,聯(lián)軸器“鎖死”;
7、軸彎曲,軸裂紋;
8、電動馬達(dá)空氣間隙不勻,齒輪咬合問題;
9、透平葉片通道共振,葉輪通過現(xiàn)象。
偏心測量
偏心是在低轉(zhuǎn)速的情況下,電渦流傳感器系統(tǒng)可以對軸彎曲程度的測量,這種彎曲可由下列情況引起:
1、原有的機(jī)械彎曲 ·臨時(shí)溫升導(dǎo)致的彎曲 ·在靜止?fàn)顟B(tài)下,必然有些向下彎曲,有時(shí)也叫重力彎曲,外力造成的彎曲。
2、偏心的測量,對于評價(jià)旋轉(zhuǎn)機(jī)械全面的機(jī)械狀態(tài),是非常重要的。特別是對于裝有透平監(jiān)測儀表系統(tǒng)(TSI)的汽輪機(jī),在啟動或停機(jī)過程中,偏心測量已成為不可少的測量項(xiàng)目。它使你能看到由于受熱或重力所引起的軸彎曲的幅度。轉(zhuǎn)子的偏心位置,也叫軸的徑向位置,它經(jīng)常用來指示軸承的磨損,以及加載荷的大小。如由不對中導(dǎo)致的那種情況,它同時(shí)也用來決定軸的方位角,方位角可以說明轉(zhuǎn)子是否穩(wěn)定。
脹差測量
對于汽輪發(fā)電機(jī)組來說,在其啟動和停機(jī)時(shí),由于金屬材料的不同,熱膨脹系數(shù)的不同,以及散熱的不同,軸的熱膨脹可能超過殼體膨脹;有可能導(dǎo)致透平機(jī)的旋轉(zhuǎn)部件和靜止部件(如機(jī)殼、噴嘴、臺座等)的相互接觸,導(dǎo)致機(jī)器的破壞。因此脹差的測量是非常重要的。
轉(zhuǎn)速測量
對于所有旋轉(zhuǎn)機(jī)械而言,都需要監(jiān)測旋轉(zhuǎn)機(jī)械軸的轉(zhuǎn)速,轉(zhuǎn)速是衡量機(jī)器正常運(yùn)轉(zhuǎn)的一個(gè)重要指標(biāo)。而電渦流傳感器測量轉(zhuǎn)速的優(yōu)越性是其它任何傳感器測量沒法比的,它既能響應(yīng)零轉(zhuǎn)速,也能響應(yīng)高轉(zhuǎn)速,抗干擾性能也非常強(qiáng)。
旋轉(zhuǎn)測量通常有以下幾種傳感器可選:電渦流轉(zhuǎn)速傳感器、無源磁電轉(zhuǎn)速傳感器、有源磁電轉(zhuǎn)速傳感器等。具有需要選擇那類傳感器,則要根據(jù)轉(zhuǎn)速測量的要求轉(zhuǎn)速等,(轉(zhuǎn)速發(fā)生裝置有以下幾種:用標(biāo)準(zhǔn)的漸開的線齒數(shù)(M1~M5)作轉(zhuǎn)速發(fā)生信號,在轉(zhuǎn)軸上開一鍵槽、在轉(zhuǎn)軸在轉(zhuǎn)軸上開孔眼、在軸轉(zhuǎn)上凸鍵等轉(zhuǎn)速發(fā)生信號裝置。
滾動軸承、電機(jī)換向器整流片動態(tài)監(jiān)控
對使用滾動軸承的機(jī)器預(yù)測性維修很重要。探頭安裝在軸承外殼中,以便觀察軸承外環(huán)。由于滾動元件在軸承旋轉(zhuǎn)時(shí),滾動元件與軸承有缺陷的地方相碰撞時(shí),外環(huán)會產(chǎn)生微小變形。監(jiān)測系統(tǒng)可以監(jiān)測到這種變形信號,當(dāng)信號變形時(shí)意味著發(fā)生了故障,如滾動元件的裂紋缺陷或者軸承環(huán)的缺陷等,還可以測量軸承內(nèi)環(huán)運(yùn)行狀態(tài),經(jīng)過運(yùn)算可以測量軸承打滑度。
2、電渦流傳感器在硬幣識別系統(tǒng)中的應(yīng)用
隨著自動投幣機(jī)的廣泛使用,社會上一些不法分子該意地研究現(xiàn)有硬幣的形態(tài)、材質(zhì),并依此制造出能以假亂真的偽幣,這些偽幣流入市場后導(dǎo)致了自動投幣機(jī)不能正常工作,給相關(guān)部門造成經(jīng)濟(jì)損失。
我國硬幣的種類繁多,這給硬幣的防偽、識別帶來相當(dāng)大的難度,硬幣識別的主要技術(shù)問題是硬幣的檢測方法,核心是檢測傳感器性能的優(yōu)劣。
硬幣識別系統(tǒng)的原理框圖如圖所示,其基本工作過程為:當(dāng)硬幣通過電渦流傳感器時(shí)會在其中產(chǎn)生相應(yīng)的電渦流,信號調(diào)理與檢測電路通過適當(dāng)變換,將電渦流信息轉(zhuǎn)換成相應(yīng)的數(shù)字量供單片機(jī)進(jìn)行實(shí)時(shí)分析處理。單片機(jī)的處理結(jié)果用于控制硬幣計(jì)數(shù)控制電路及聲光報(bào)警電路的工作,完成對硬幣的識別任務(wù)。
由電渦流傳感器為檢測元件構(gòu)成的硬幣識別系統(tǒng),是針對我國目前發(fā)行的1元硬幣的金屬原材料專門設(shè)計(jì)的。
當(dāng)硬幣通過投幣入口進(jìn)入投幣機(jī)的路徑時(shí),電渦流傳感器是利用磁路中磁阻變化,并在置于其中的導(dǎo)體內(nèi)產(chǎn)生電流,這種電流的流線在金屬導(dǎo)體內(nèi)是閉合的(所以叫做渦流,或稱電渦流)。
此電流還會產(chǎn)生一個(gè)交變磁場來阻礙外磁場的變化。從其能量角度來看,因?yàn)樵诒粶y導(dǎo)體內(nèi)存在電渦流損耗也會產(chǎn)生電磁效應(yīng),因此它既會產(chǎn)生焦耳熱,又要產(chǎn)生磁滯損耗,造成交變磁場能量的損失。這些能量的損耗會使傳感器的等效電抗、等效電感和品質(zhì)因數(shù)值發(fā)生變化。
假如使得傳感器與被測導(dǎo)體間的距離保持不變,則傳感器的輸出參數(shù)將與被測導(dǎo)體材料的電導(dǎo)率、磁導(dǎo)率成函數(shù)關(guān)系。當(dāng)線圈與金屬導(dǎo)體之間的距離固定,傳感器輸出信號的頻率只與磁場中的金屬導(dǎo)體材料的固有性質(zhì)有關(guān),即信號頻率受線圈電感的影響。
當(dāng)硬幣靠近線圈時(shí),電感將發(fā)生變化,則正弦波頻率也必將發(fā)生相應(yīng)的變化。因此信號頻率的變化反映了硬幣的材質(zhì)特征,所以可以通過測量傳感器信號的頻率來獲得分辨真假、幣值的依據(jù)。利用這個(gè)關(guān)系可以用來測量金屬材料的電導(dǎo)率、磁導(dǎo)率等參數(shù)。
這些參數(shù)與導(dǎo)體的材質(zhì)、幾何形狀等因數(shù)有著一定的關(guān)系。找出不同金屬材質(zhì)和體積對系統(tǒng)磁場信息的影響大小而產(chǎn)生的微弱差異,經(jīng)信號調(diào)理電路將這些信號進(jìn)行處理,之后通過單片微型計(jì)算機(jī)對所采集數(shù)據(jù)的智能分析,就能完成對金屬硬幣的識別。
3、電渦流傳感器在其它領(lǐng)域中的應(yīng)用
電磁爐
電磁爐是我們?nèi)粘I钪斜貍涞募矣秒娖髦?,渦流傳感器是其核心器件之一,高頻電流通過勵磁線圈,產(chǎn)生交變磁場;在鐵質(zhì)鍋底會產(chǎn)生無數(shù)的電渦流,使鍋底自行發(fā)熱,燒開鍋內(nèi)的食物。
電渦流探雷器
電渦流式接近開關(guān)
接近開關(guān)又稱無觸點(diǎn)行程開關(guān)。它能在一定的距離(幾毫米至幾十毫米)內(nèi)檢測有無物體靠近。
當(dāng)物體接近到設(shè)定距離時(shí),就可發(fā)出“動作”信號。接近開關(guān)的核心部分是“感辨頭”,它對正在接近的物體有很高的感辨能力。這種接近開關(guān)只能檢測金屬。
隨著機(jī)電一體化智能技術(shù)的發(fā)展,電渦流傳感器的性能將會得到進(jìn)一步的完善,其檢測結(jié)果將會更精確,檢測距離將會更長,動態(tài)檢測性能更好,因此,電渦流傳感器的應(yīng)用前景將會更加廣闊。
審核編輯 :李倩
-
傳感器
+關(guān)注
關(guān)注
2552文章
51304瀏覽量
755266 -
磁場
+關(guān)注
關(guān)注
3文章
882瀏覽量
24266 -
電渦流
+關(guān)注
關(guān)注
0文章
37瀏覽量
10284
原文標(biāo)題:一文看懂電渦流傳感器
文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論