0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

FPGA與GPU架構(gòu)的背景

FPGA之家 ? 來(lái)源:FPGA之家 ? 作者:FPGA之家 ? 2022-06-13 09:58 ? 次閱讀

人工智能AI)模型的規(guī)模和復(fù)雜度以每年大約 10 倍的速度不斷增加,AI 解決方案提供商面臨著巨大的壓力,他們必須縮短產(chǎn)品上市時(shí)間,提高性能,快速適應(yīng)不斷變化的形勢(shì)。模型復(fù)雜性日益增加,AI 優(yōu)化的硬件隨之出現(xiàn)。

例如,近年來(lái),圖形處理單元(GPU)集成了 AI 優(yōu)化的算法單元,以提高 AI 計(jì)算吞吐量。然而,隨著 AI 算法和工作負(fù)載的演變與發(fā)展,它們會(huì)展現(xiàn)出一些屬性,讓我們難以充分利用可用的 AI 計(jì)算吞吐量,除非硬件提供廣泛的靈活性來(lái)適應(yīng)這種算法變化。近期的論文表明,許多 AI 工作負(fù)載都難以實(shí)現(xiàn) GPU 供應(yīng)商報(bào)告的全部計(jì)算能力。即使對(duì)于高度并行的計(jì)算,如一般矩陣乘法(GEMM),GPU 也只能在一定規(guī)模的矩陣下實(shí)現(xiàn)高利用率。因此,盡管 GPU 在理論上提供較高的 AI 計(jì)算吞吐量(通常稱為“峰值吞吐量”),但在運(yùn)行 AI 應(yīng)用時(shí),實(shí)際性能可能低得多。

FPGA 可提供一種不同的 AI 優(yōu)化的硬件方法。與 GPU 不同,F(xiàn)PGA 提供獨(dú)特的精細(xì)化空間可重構(gòu)性。這意味著我們可以配置 FPGA 資源,以極為準(zhǔn)確的順序執(zhí)行精確的數(shù)學(xué)函數(shù),從而實(shí)施所需的操作。每個(gè)函數(shù)的輸出都可以直接路由到需要它的函數(shù)的輸入之中。這種方法支持更加靈活地適應(yīng)特定的 AI 算法和應(yīng)用特性,從而提高可用 FPGA 計(jì)算能力的利用率。此外,雖然 FPGA 需要硬件專業(yè)知識(shí)才能編程(通過(guò)硬件描述語(yǔ)言),但專門設(shè)計(jì)的軟核處理單元(也就是重疊結(jié)構(gòu)),允許 FPGA 以類似處理器的方式編程。FPGA 編程完全通過(guò)軟件工具鏈來(lái)完成,簡(jiǎn)化了任何特定于 FPGA 的硬件復(fù)雜性。

FPGA與GPU架構(gòu)的背景

2020 年,英特爾 宣布推出首款 AI 優(yōu)化的 FPGA — 英特爾 Stratix 10 NX FPGA 器件。英特爾 Stratix 10 NX FPGA 包括 AI 張量塊,支持 FPGA 實(shí)現(xiàn)高達(dá) 143 INT8 和 286 INT4 峰值 AI 計(jì)算 TOPS 或 143 塊浮點(diǎn) 16(BFP16)和 286 塊浮點(diǎn) 12(BFP12)TFLOPS。最近的論文表明,塊浮點(diǎn)精度可為許多 AI 工作負(fù)載提供更高的精度和更低的消耗。NVIDIA GPU 同樣也提供張量核。但從架構(gòu)的角度來(lái)看,GPU 張量核和 FPGA AI 張量塊有很大的不同,如下圖所示。

909881c0-eaac-11ec-ba43-dac502259ad0.png

GPU 和 FPGA 都有張量核心。FPGA 有可以在數(shù)據(jù)流內(nèi)外編織的軟邏輯

90ce859a-eaac-11ec-ba43-dac502259ad0.png

(左)GPU 數(shù)據(jù)從張量核心處理的內(nèi)存系統(tǒng)中讀取,寫回內(nèi)存系統(tǒng)。(右)FPGA 數(shù)據(jù)可以從內(nèi)存中讀取,但數(shù)據(jù)流可以并行安排到一個(gè)或多個(gè)張量核心。任意數(shù)量的張量核心都能以最小的傳輸開(kāi)銷使用輸出。數(shù)據(jù)可以被寫回內(nèi)存或路由到其他任何地方

英特爾研究人員開(kāi)發(fā)了一種名為神經(jīng)處理單元(NPU)的 AI 軟處理器。這種 AI 軟處理器適用于低延遲、低批量推理。它將所有模型權(quán)重保持在一個(gè)或多個(gè)連接的 FPGA 上以降低延遲,從而確保模型持久性。

910acc80-eaac-11ec-ba43-dac502259ad0.png

NPU 重疊架構(gòu)和用于編程 NPU 軟核處理器的前端工具鏈高級(jí)概述

FPGA與GPU性能比較

本次研究的重點(diǎn)是計(jì)算性能。下圖比較了英特爾 Stratix 10 NX FPGA 上的 NPU 與 NVIDIA T4 和 V100 GPU 運(yùn)行各種深度學(xué)習(xí)工作負(fù)載的性能,包括多層感知器(MLP)、一般矩陣向量乘法(GEMV)、遞歸神經(jīng)網(wǎng)絡(luò)(RNN)、長(zhǎng)期短期記憶(LSTM)和門控循環(huán)單元(GRU)。GEMV 和 MLP 由矩陣大小來(lái)指定,RNN、LSTM 和 GRU 則通過(guò)大小和時(shí)間步長(zhǎng)來(lái)指定。例如,LSTM-1024-16 工作負(fù)載表示包含 1024x1024 矩陣和 16 個(gè)時(shí)間步長(zhǎng)的 LSTM。

91486914-eaac-11ec-ba43-dac502259ad0.png

NVIDIA V100 和 NVIDIA T4 與英特爾 Stratix 10 NX FPGA 上的 NPU 在不同批處理規(guī)模下的性能。虛線顯示 NPU 在批次大小可被 6 整除情況下的性能

從這些結(jié)果可以充分地看出,英特爾 Stratix 10 NX FPGA 不僅可以在低批次實(shí)時(shí)推理時(shí)實(shí)現(xiàn)比 GPU 高一個(gè)數(shù)量級(jí)的性能,還可以有效地進(jìn)行高批次實(shí)時(shí)推理。

由于架構(gòu)上的差異和靈活編程模型,英特爾 Stratix 10 NX FPGA 還可實(shí)現(xiàn)更出色的端到端性能。不會(huì)產(chǎn)生與 GPU 相同的開(kāi)銷。

91848282-eaac-11ec-ba43-dac502259ad0.png

短序列和長(zhǎng)序列時(shí) RNN 工作負(fù)載的系統(tǒng)級(jí)執(zhí)行時(shí)間(越低越好)

結(jié)論

英特爾 Stratix 10 NX FPGA 采用高度靈活的架構(gòu),所實(shí)現(xiàn)的平均性能比 NVIDIA T4 GPU 和 NVIDIA V100 GPU 分別高 24 倍和 12 倍。

由于其較高的計(jì)算密度,英特爾 Stratix 10 NX FPGA 可為以實(shí)際可達(dá)到性能為重要指標(biāo)的高性能、延遲敏感型 AI 系統(tǒng)提供至關(guān)重要的功能。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1630

    文章

    21777

    瀏覽量

    604733
  • 英特爾
    +關(guān)注

    關(guān)注

    61

    文章

    9998

    瀏覽量

    172042
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4625

    瀏覽量

    93123

原文標(biāo)題:實(shí)際性能超過(guò)GPU,英特爾?Stratix?10 NX FPGA如何助您在AI加速領(lǐng)域贏得先機(jī)?

文章出處:【微信號(hào):zhuyandz,微信公眾號(hào):FPGA之家】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    FPGA+GPU+CPU國(guó)產(chǎn)化人工智能平臺(tái)

    算法架構(gòu)可快速移植,接口靈活搭配,具備部署靈活、功耗和算力性價(jià)比高、支持人工智能推理應(yīng)用部署等特點(diǎn)。FPGA+GPU+CPU多核異構(gòu)平臺(tái)架構(gòu)示意圖前面板實(shí)物圖前面板
    的頭像 發(fā)表于 01-07 16:42 ?286次閱讀
    <b class='flag-5'>FPGA+GPU</b>+CPU國(guó)產(chǎn)化人工智能平臺(tái)

    芯原發(fā)布新一代Vitality架構(gòu)GPU IP系列

    芯原股份近日宣布,正式推出全新Vitality架構(gòu)的圖形處理器(GPU)IP系列。這一新一代GPU架構(gòu)以其卓越的計(jì)算性能和廣泛的應(yīng)用領(lǐng)域,吸引了業(yè)界的廣泛關(guān)注。 Vitality
    的頭像 發(fā)表于 12-24 10:55 ?226次閱讀

    GPU服務(wù)器AI網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)

    眾所周知,在大型模型訓(xùn)練中,通常采用每臺(tái)服務(wù)器配備多個(gè)GPU的集群架構(gòu)。在上一篇文章《高性能GPU服務(wù)器AI網(wǎng)絡(luò)架構(gòu)(上篇)》中,我們對(duì)GPU
    的頭像 發(fā)表于 11-05 16:20 ?497次閱讀
    <b class='flag-5'>GPU</b>服務(wù)器AI網(wǎng)絡(luò)<b class='flag-5'>架構(gòu)</b>設(shè)計(jì)

    【「算力芯片 | 高性能 CPU/GPU/NPU 微架構(gòu)分析」閱讀體驗(yàn)】--了解算力芯片GPU

    本篇閱讀學(xué)習(xí)第七、八章,了解GPU架構(gòu)演進(jìn)及CPGPU存儲(chǔ)體系與線程管理 █從圖形到計(jì)算的GPU架構(gòu)演進(jìn) GPU圖像計(jì)算發(fā)展 ●從三角形開(kāi)始
    發(fā)表于 11-03 12:55

    【「算力芯片 | 高性能 CPU/GPU/NPU 微架構(gòu)分析」閱讀體驗(yàn)】--全書(shū)概覽

    、GPU、NPU,給我們剖析了算力芯片的微架構(gòu)。書(shū)中有對(duì)芯片方案商處理器的講解,理論聯(lián)系實(shí)際,使讀者能更好理解算力芯片。 全書(shū)共11章,由淺入深,較系統(tǒng)全面進(jìn)行講解。下面目錄對(duì)全書(shū)內(nèi)容有一個(gè)整體了解
    發(fā)表于 10-15 22:08

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.43】 算力芯片 | 高性能 CPU/GPU/NPU 微架構(gòu)分析

    。本書(shū)對(duì)華為等廠商推出的NPU芯片設(shè)計(jì)也做了架構(gòu)描述,中國(guó)也擁有獨(dú)立自主知識(shí)產(chǎn)權(quán)的高算力芯片,并且支持多芯片、高帶寬互連。本書(shū)也回顧了近20年來(lái)主流的CPU、GPU芯片架構(gòu)的特點(diǎn),介紹了存儲(chǔ)與互連總線技術(shù)
    發(fā)表于 09-02 10:09

    ALINX FPGA+GPU架構(gòu)視頻圖像處理開(kāi)發(fā)平臺(tái)介紹

    Alinx 最新發(fā)布的新品 Z19-M 是一款創(chuàng)新的 FPGA+GPU 異構(gòu)架構(gòu)視頻圖像處理開(kāi)發(fā)平臺(tái),它結(jié)合了 AMD Zynq UltraScale+ MPSoC(FPGA)與 NVIDIA Jetson Orin NX(
    的頭像 發(fā)表于 08-29 14:43 ?1245次閱讀

    自動(dòng)駕駛?cè)笾髁餍酒?b class='flag-5'>架構(gòu)分析

    當(dāng)前主流的AI芯片主要分為三類,GPU、FPGA、ASIC。GPU、FPGA均是前期較為成熟的芯片架構(gòu),屬于通用型芯片。ASIC屬于為AI特
    的頭像 發(fā)表于 08-19 17:11 ?1697次閱讀
    自動(dòng)駕駛?cè)笾髁餍酒?b class='flag-5'>架構(gòu)</b>分析

    科普:GPUFPGA,有何異同

    來(lái)源:內(nèi)容由半導(dǎo)體行業(yè)觀察(ID:icbank)編譯自techspot,謝謝。圖形處理單元(GPU)和現(xiàn)場(chǎng)可編程門陣列(FPGA)是用于成像和其他繁重計(jì)算的三種主要處理器類型中的兩種。中央處理器
    的頭像 發(fā)表于 06-15 08:27 ?675次閱讀
    科普:<b class='flag-5'>GPU</b>和<b class='flag-5'>FPGA</b>,有何異同

    X-Silicon發(fā)布RISC-V新架構(gòu) 實(shí)現(xiàn)CPU/GPU一體化

    X-Silicon 的芯片與其他架構(gòu)不同,其設(shè)計(jì)將 CPU 和 GPU 的功能整合到單核架構(gòu)中。這與英特爾和 AMD 的典型設(shè)計(jì)不同,前者有獨(dú)立的 CPU 內(nèi)核和 GPU 內(nèi)核。
    發(fā)表于 04-08 11:34 ?623次閱讀
    X-Silicon發(fā)布RISC-V新<b class='flag-5'>架構(gòu)</b> 實(shí)現(xiàn)CPU/<b class='flag-5'>GPU</b>一體化

    fpgagpu的區(qū)別

    FPGA(現(xiàn)場(chǎng)可編程門陣列)和GPU(圖形處理器)在多個(gè)方面存在顯著的區(qū)別。
    的頭像 發(fā)表于 03-27 14:23 ?1267次閱讀

    fpga封裝技術(shù)和arm架構(gòu)的優(yōu)缺點(diǎn)

    FPGA封裝技術(shù)和ARM架構(gòu)是兩個(gè)不同的概念,分別屬于硬件設(shè)計(jì)的不同領(lǐng)域。
    的頭像 發(fā)表于 03-26 15:51 ?931次閱讀

    FPGA在深度學(xué)習(xí)應(yīng)用中或?qū)⑷〈?b class='flag-5'>GPU

    現(xiàn)場(chǎng)可編程門陣列 (FPGA) 解決了 GPU 在運(yùn)行深度學(xué)習(xí)模型時(shí)面臨的許多問(wèn)題 在過(guò)去的十年里,人工智能的再一次興起使顯卡行業(yè)受益匪淺。英偉達(dá) (Nvidia) 和 AMD 等公司的股價(jià)也大幅
    發(fā)表于 03-21 15:19

    fpga芯片架構(gòu)介紹

    FPGA(現(xiàn)場(chǎng)可編程門陣列)芯片架構(gòu)是一種高度靈活和可編程的集成電路架構(gòu),它以其獨(dú)特的結(jié)構(gòu)和功能,在現(xiàn)代電子系統(tǒng)中扮演著至關(guān)重要的角色。FPGA芯片
    的頭像 發(fā)表于 03-15 14:56 ?806次閱讀

    fpga是什么架構(gòu)

    FPGA(現(xiàn)場(chǎng)可編程門陣列)的架構(gòu)主要由可配置邏輯模塊(CLB)、輸入/輸出模塊(IOB)以及可編程互連資源組成。
    的頭像 發(fā)表于 03-14 17:05 ?962次閱讀