0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

多個(gè)能將深度學(xué)習(xí)訓(xùn)練過程進(jìn)行可視化的工具

新機(jī)器視覺 ? 來源:極市平臺(tái)、機(jī)器學(xué)習(xí)實(shí)驗(yàn) ? 作者:極市平臺(tái)、機(jī)器學(xué) ? 2022-06-09 11:17 ? 次閱讀

導(dǎo)讀

本文介紹了多個(gè)能將深度學(xué)習(xí)訓(xùn)練過程進(jìn)行可視化的工具,幫助大家更好地理解深度學(xué)習(xí),非常實(shí)用。

深度學(xué)習(xí)訓(xùn)練過程一直處于黑匣子狀態(tài),有很多同學(xué)問我具體怎么解釋?其實(shí)很多還是無法可解釋,但是通過可視化,具體可以知道深度學(xué)習(xí)在訓(xùn)練過程到底學(xué)習(xí)了哪些特征?到底對(duì)該目標(biāo)的哪些特征感興趣?這些我們現(xiàn)在已經(jīng)有很多渠道可以得知,我先給大家介紹幾個(gè)比較好的工具!

f99f1b18-e730-11ec-ba43-dac502259ad0.png

1.深度學(xué)習(xí)網(wǎng)絡(luò)結(jié)構(gòu)畫圖工具 地址: https://cbovar.github.io/ConvNetDraw/

f9d44d4c-e730-11ec-ba43-dac502259ad0.png

2.caffe可視化工具 輸入:caffe配置文件 輸出:網(wǎng)絡(luò)結(jié)構(gòu) 地址: http://ethereon.github.io/netscope/#/editor

fa0618cc-e730-11ec-ba43-dac502259ad0.png

3.深度學(xué)習(xí)可視化工具Visual DL Visual DL是百度開發(fā)的,基于echar和PaddlePaddle,支持PaddlePaddle,PyTorch和MXNet等主流框架。ps:這個(gè)是我最喜歡的,畢竟echar的渲染能力不錯(cuò)哈哈哈,可惜不支持caffe和tensorflow。 地址: https://github.com/PaddlePaddle/VisualDL 4.結(jié)構(gòu)可視化工具PlotNeuralNet 薩爾大學(xué)計(jì)算機(jī)科學(xué)專業(yè)的一個(gè)學(xué)生開發(fā)。 地址: https://github.com/HarisIqbal88/PlotNeuralNet 其實(shí)還有很多可視化工具,但是今天我要說的是,訓(xùn)練過程的可視化,與TF的可視化類似,但是這個(gè)操作更加簡(jiǎn)便!

fa3583aa-e730-11ec-ba43-dac502259ad0.png

這個(gè)工具到底把訓(xùn)練過程展示得多么詳細(xì)?簡(jiǎn)單來說,項(xiàng)目作者已經(jīng)給你做好了一個(gè)可以交互的界面,你只需要打開瀏覽器加載出這個(gè)界面就可以了。CNN Explainer 使用 TensorFlow.js 加載預(yù)訓(xùn)練模型進(jìn)行可視化效果,交互方面則使用 Svelte 作為框架并使用 D3.js 進(jìn)行可視化。最終的成品即使對(duì)于完全不懂的新手來說,也沒有使用門檻。下面我們來看一下具體的效果。

fa5e80a2-e730-11ec-ba43-dac502259ad0.gif

卷積

faf88c1a-e730-11ec-ba43-dac502259ad0.gif

fbda59ec-e730-11ec-ba43-dac502259ad0.png

fc098fbe-e730-11ec-ba43-dac502259ad0.gif

超參數(shù)

fcf544ae-e730-11ec-ba43-dac502259ad0.png

softmax

fd469d4a-e730-11ec-ba43-dac502259ad0.png

fd8070ce-e730-11ec-ba43-dac502259ad0.gif

ReLU

fdcf6c38-e730-11ec-ba43-dac502259ad0.png

MaxPool

fe009272-e730-11ec-ba43-dac502259ad0.png

fe3c99d4-e730-11ec-ba43-dac502259ad0.gif

通過整個(gè)過程,想必大家對(duì)過程有詳細(xì)了解,如果你技術(shù)好的,你可以通過深度學(xué)習(xí)平臺(tái)直接可視化訓(xùn)練過程,那個(gè)過程想必比這個(gè)更加詳細(xì)。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 可視化
    +關(guān)注

    關(guān)注

    1

    文章

    1198

    瀏覽量

    20989
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5510

    瀏覽量

    121338

原文標(biāo)題:最全深度學(xué)習(xí)訓(xùn)練過程可視化工具(附github源碼)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    光學(xué)系統(tǒng)的3D可視化

    **摘要 ** 為了從根本上了解光學(xué)系統(tǒng)的特性,對(duì)其組件進(jìn)行可視化并顯示光的傳播情況大有幫助。為此,VirtualLab Fusion 提供了顯示光學(xué)系統(tǒng)三維可視化工具。這些
    發(fā)表于 01-06 08:53

    焊接過程可視化的應(yīng)用前景有哪些

    檢測(cè)。隨著智能制造的快速發(fā)展,焊接過程可視化技術(shù)逐漸興起,為焊接質(zhì)量控制帶來了全新的解決方案,今天一起了解焊接過程可視化的應(yīng)用前景有哪些。 焊接
    的頭像 發(fā)表于 11-07 15:33 ?193次閱讀
    焊接<b class='flag-5'>過程</b><b class='flag-5'>可視化</b>的應(yīng)用前景有哪些

    基于Python的深度學(xué)習(xí)人臉識(shí)別方法

    基于Python的深度學(xué)習(xí)人臉識(shí)別方法是一個(gè)涉及多個(gè)技術(shù)領(lǐng)域的復(fù)雜話題,包括計(jì)算機(jī)視覺、深度學(xué)習(xí)、以及圖像處理等。在這里,我將概述一個(gè)基本的
    的頭像 發(fā)表于 07-14 11:52 ?1295次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和訓(xùn)練過程

    網(wǎng)絡(luò)結(jié)構(gòu),通過誤差反向傳播算法(Error Backpropagation Algorithm)來訓(xùn)練網(wǎng)絡(luò),實(shí)現(xiàn)對(duì)復(fù)雜問題的學(xué)習(xí)和解決。以下將詳細(xì)闡述BP神經(jīng)網(wǎng)絡(luò)的工作方式,涵蓋其基本原理、訓(xùn)練過程、應(yīng)用實(shí)例以及優(yōu)缺點(diǎn)等
    的頭像 發(fā)表于 07-10 15:07 ?4934次閱讀
    BP神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和<b class='flag-5'>訓(xùn)練過程</b>

    解讀PyTorch模型訓(xùn)練過程

    PyTorch作為一個(gè)開源的機(jī)器學(xué)習(xí)庫,以其動(dòng)態(tài)計(jì)算圖、易于使用的API和強(qiáng)大的靈活性,在深度學(xué)習(xí)領(lǐng)域得到了廣泛的應(yīng)用。本文將深入解讀PyTorch模型訓(xùn)練的全
    的頭像 發(fā)表于 07-03 16:07 ?1121次閱讀

    深度學(xué)習(xí)的典型模型和訓(xùn)練過程

    深度學(xué)習(xí)作為人工智能領(lǐng)域的一個(gè)重要分支,近年來在圖像識(shí)別、語音識(shí)別、自然語言處理等多個(gè)領(lǐng)域取得了顯著進(jìn)展。其核心在于通過構(gòu)建復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,從大規(guī)模數(shù)據(jù)中自動(dòng)學(xué)習(xí)并提取特征,進(jìn)而實(shí)
    的頭像 發(fā)表于 07-03 16:06 ?1599次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和訓(xùn)練過程

    處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)表現(xiàn)出色。本文將從卷積神經(jīng)網(wǎng)絡(luò)的歷史背景、基本原理、網(wǎng)絡(luò)結(jié)構(gòu)、訓(xùn)練過程以及應(yīng)用領(lǐng)域等方面進(jìn)行詳細(xì)闡述,以期全面解析這一重要算法。
    的頭像 發(fā)表于 07-02 18:27 ?979次閱讀

    CNN模型的基本原理、結(jié)構(gòu)、訓(xùn)練過程及應(yīng)用領(lǐng)域

    CNN模型的基本原理、結(jié)構(gòu)、訓(xùn)練過程以及應(yīng)用領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 1.1 卷積運(yùn)算 卷積運(yùn)算是CNN模型的核心,它是一種數(shù)學(xué)運(yùn)算
    的頭像 發(fā)表于 07-02 15:26 ?3912次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理、結(jié)構(gòu)及訓(xùn)練過程

    、訓(xùn)練過程以及應(yīng)用場(chǎng)景。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積運(yùn)算 卷積運(yùn)算是卷積神經(jīng)網(wǎng)絡(luò)的核心,它是一種數(shù)學(xué)運(yùn)算,用于提取圖像中的局部特征。卷積運(yùn)算的過程如下: (1)定義卷積核:卷積核是一個(gè)小的矩陣,用于在輸入圖像上滑動(dòng),提取局部特征。 (2)滑動(dòng)窗口:將
    的頭像 發(fā)表于 07-02 14:21 ?2814次閱讀

    深度學(xué)習(xí)模型訓(xùn)練過程詳解

    詳細(xì)介紹深度學(xué)習(xí)模型訓(xùn)練的全過程,包括數(shù)據(jù)預(yù)處理、模型構(gòu)建、損失函數(shù)定義、優(yōu)化算法選擇、訓(xùn)練過程以及模型的評(píng)估與調(diào)優(yōu)。
    的頭像 發(fā)表于 07-01 16:13 ?1399次閱讀

    深度學(xué)習(xí)的模型優(yōu)化與調(diào)試方法

    深度學(xué)習(xí)模型在訓(xùn)練過程中,往往會(huì)遇到各種問題和挑戰(zhàn),如過擬合、欠擬合、梯度消失或爆炸等。因此,對(duì)深度學(xué)習(xí)模型
    的頭像 發(fā)表于 07-01 11:41 ?905次閱讀

    訊維數(shù)字孿生可視化系統(tǒng):開啟智慧醫(yī)療虛擬手術(shù)訓(xùn)練新紀(jì)元

    訊維數(shù)字孿生可視化系統(tǒng)在智慧醫(yī)療虛擬手術(shù)訓(xùn)練領(lǐng)域的應(yīng)用,標(biāo)志著該領(lǐng)域進(jìn)入了全新的紀(jì)元。該系統(tǒng)通過集成先進(jìn)的數(shù)字孿生技術(shù)和可視化技術(shù),為醫(yī)療教育和手術(shù)訓(xùn)練帶來了革命性的變革。 首先,訊維
    的頭像 發(fā)表于 05-07 16:30 ?507次閱讀

    【大語言模型:原理與工程實(shí)踐】核心技術(shù)綜述

    的復(fù)雜模式和長(zhǎng)距離依賴關(guān)系。 預(yù)訓(xùn)練策略: 預(yù)訓(xùn)練是LLMs訓(xùn)練過程的第一階段,模型在大量的文本數(shù)據(jù)上學(xué)習(xí)語言的通用表示。常用的預(yù)訓(xùn)練
    發(fā)表于 05-05 10:56

    深入探討機(jī)器學(xué)習(xí)可視化技術(shù)

    機(jī)器學(xué)習(xí)可視化(簡(jiǎn)稱ML可視化)一般是指通過圖形或交互方式表示機(jī)器學(xué)習(xí)模型、數(shù)據(jù)及其關(guān)系的過程。目標(biāo)是使理解模型的復(fù)雜算法和數(shù)據(jù)模式更容易,
    發(fā)表于 04-25 11:17 ?448次閱讀
    深入探討機(jī)器<b class='flag-5'>學(xué)習(xí)</b>的<b class='flag-5'>可視化</b>技術(shù)

    FUXA基于Web的過程可視化軟件案例

    FUXA——基于Web的過程可視化軟件
    發(fā)表于 04-24 18:32 ?2次下載