0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

擴散模型在視頻領(lǐng)域表現(xiàn)如何?

新機器視覺 ? 來源:機器之心 ? 作者:機器之心 ? 2022-04-13 10:04 ? 次閱讀

擴散模型正在不斷的「攻城略地」。

擴散模型并不是一個嶄新的概念,早在2015年就已經(jīng)被提出。其核心應(yīng)用領(lǐng)域包括音頻建模、語音合成、時間序列預(yù)測、降噪等。

那么它在視頻領(lǐng)域表現(xiàn)如何?先前關(guān)于視頻生成的工作通常采用諸如GAN、VAE、基于流的模型。

在視頻生成領(lǐng)域,研究的一個重要里程碑是生成時間相干的高保真視頻。來自谷歌的研究者通過提出一個視頻生成擴散模型來實現(xiàn)這一里程碑,顯示出非常有希望的初步結(jié)果。本文所提出的模型是標(biāo)準(zhǔn)圖像擴散架構(gòu)的自然擴展,它可以從圖像和視頻數(shù)據(jù)中進行聯(lián)合訓(xùn)練,研究發(fā)現(xiàn)這可以減少小批量梯度的方差并加快優(yōu)化速度。

為了生成更長和更高分辨率的視頻,該研究引入了一種新的用于空間和時間視頻擴展的條件采樣技術(shù),該技術(shù)比以前提出的方法表現(xiàn)更好。

30908a38-ba83-11ec-aa7f-dac502259ad0.png

論文地址:https://arxiv.org/pdf/2204.03458.pdf

論文主頁:https://video-diffusion.github.io/

研究展示了文本條件視頻生成的結(jié)果和無條件視頻生成基準(zhǔn)的最新結(jié)果。例如生成五彩斑斕的煙花:

30a02fc4-ba83-11ec-aa7f-dac502259ad0.gif

其他生成結(jié)果展示:

30c6b572-ba83-11ec-aa7f-dac502259ad0.gif

這項研究有哪些亮點呢?首先谷歌展示了使用擴散模型生成視頻的首個結(jié)果,包括無條件和有條件設(shè)置。先前關(guān)于視頻生成的工作通常采用其他類型的生成模型,如 GAN、VAE、基于流的模型和自回歸模型。

其次該研究表明,可以通過高斯擴散模型的標(biāo)準(zhǔn)公式來生成高質(zhì)量的視頻,除了直接的架構(gòu)更改以適應(yīng)深度學(xué)習(xí)加速器的內(nèi)存限制外,幾乎不需要其他修改。該研究訓(xùn)練生成固定數(shù)量的視頻幀塊的模型,并且為了生成比該幀數(shù)更長的視頻,他們還展示了如何重新調(diào)整訓(xùn)練模型的用途,使其充當(dāng)對幀進行塊自回歸的模型。

方法介紹

圖像擴散模型中31a1e930-ba83-11ec-aa7f-dac502259ad0.png的標(biāo)準(zhǔn)架構(gòu)是U-Net,它是一種被構(gòu)造為空間下采樣通道的神經(jīng)網(wǎng)絡(luò)架構(gòu),空間上采樣通道緊隨其后,其中殘差連接到下采樣通道激活。這種神經(jīng)網(wǎng)絡(luò)由2D卷積殘差塊的層構(gòu)建而成,并且每個這種卷積塊的后面是空間注意力塊。

研究者建議將這一圖像擴散模型架構(gòu)擴展至視頻數(shù)據(jù),給定了固定數(shù)量幀的塊,并且使用了在空間和時間上分解的特定類型的 3D U-Net。

首先,研究者通過將每個 2D卷積改成space-only 3D卷積對圖像模型架構(gòu)進行修改,比如將每個3x3卷積改成了1x3x3卷積,即第一個軸(axis)索引視頻幀,第二和第三個索引空間高度和寬度。每個空間注意力塊中的注意力仍然為空間上的注意力,也即第一個軸被視為批處理軸(batch axis)。

其次,在每個空間注意力塊之后,研究者插入一個時間注意力塊,它在第一個軸上執(zhí)行注意力并將空間軸視為批處理軸。他們在每個時間注意力塊中使用相對位置嵌入,如此網(wǎng)絡(luò)不需要絕對視頻時間概念即可區(qū)分幀的順序。3D U-Net 的模型架構(gòu)可視圖如下所示。

31acf762-ba83-11ec-aa7f-dac502259ad0.png

我們都知道,得益于分解時空注意力的計算效率,在視頻transformers中使用它是一個很好的選擇。研究者使用的分解時空架構(gòu)是自身視頻生成設(shè)置獨有的,它的一大優(yōu)勢是可以直接 mask 模型以在獨立圖像而非視頻上運行,其中只需刪除每個時間注意力塊內(nèi)部的注意力操作并修復(fù)注意力矩陣以在每個視頻時間步精確匹配每個鍵和問詢向量。

這樣做的好處是允許聯(lián)合訓(xùn)練視頻和圖像生成的模型。研究者在實驗中發(fā)現(xiàn),這種聯(lián)合訓(xùn)練對樣本質(zhì)量非常重要。

新穎的條件生成梯度方法

研究者的主要創(chuàng)新是設(shè)計了一種新的、用于無條件擴散模型的條件生成方法,稱之為梯度方法,它修改了模型的采樣過程以使用基于梯度的優(yōu)化來改進去噪數(shù)據(jù)上的條件損失。他們發(fā)現(xiàn),梯度方法比現(xiàn)有方法更能確保生成樣本與條件信息的一致性。

研究者使用該梯度方法將自己的模型自回歸地擴展至更多的時間步和更高的分辨率。

下圖左為利用梯度方法的視頻幀,圖右為利用自回歸擴展基線替代(replacement)方法的幀??梢钥吹?,使用梯度方法采用的視頻比基線方法具有更好的時間相干性。

31baddd2-ba83-11ec-aa7f-dac502259ad0.png

實驗結(jié)果

研究者對無條件、文本-條件視頻生成模型進行了評估。文本-條件視頻生成是在一個包含 1000 萬個字幕視頻數(shù)據(jù)集上進行訓(xùn)練,視頻空間分辨率為 64x64 ;對于無條件視頻生成,該研究在現(xiàn)有基準(zhǔn) [36] 上訓(xùn)練和評估模型。

無條件視頻建模該研究使用 Soomro 等人[36]提出的基準(zhǔn)對無條件視頻生成模型進行評估。表 1 展示了該研究所提模型生成的視頻的感知質(zhì)量得分,并與文獻中的方法進行了比較,發(fā)現(xiàn)本文方法大大提高了SOTA。

31d7767c-ba83-11ec-aa7f-dac502259ad0.png

視頻、圖像模型聯(lián)合訓(xùn)練:表 2 報告了針對文本-條件的 16x64x64 視頻的實驗結(jié)果。

31eaf116-ba83-11ec-aa7f-dac502259ad0.png

無分類器指導(dǎo)的效果:表3 表明無分類器指導(dǎo) [13] 在文本-視頻生成方面的有效性。正如預(yù)期的那樣,隨著指導(dǎo)權(quán)重的增加,類 Inception Score 的指標(biāo)有明顯的改進,而類 FID 的指標(biāo)隨著引導(dǎo)權(quán)重的增加先改善然后下降。

表 3 報告的結(jié)果驗證了無分類器指導(dǎo) [13] 在文本-視頻生成方面的有效性。正如預(yù)期的那樣,隨著引導(dǎo)權(quán)重的增加,類 Inception Score (IS)的指標(biāo)有明顯的改進,而類 FID 的指標(biāo)隨著引導(dǎo)權(quán)重的增加先改善然后下降。這一現(xiàn)象在文本-圖像生成方面也有類似的發(fā)現(xiàn)[23]。

31fa1d94-ba83-11ec-aa7f-dac502259ad0.png

圖 3 顯示了無分類器指導(dǎo) [13] 對文本-條件視頻模型的影響。與在文本條件圖像生成 [23] 和類條件圖像生成 [13, 11] 上使用無分類器指導(dǎo)的其他工作中觀察到的類似,添加指導(dǎo)提高了每個圖像的樣本保真度。

3209e472-ba83-11ec-aa7f-dac502259ad0.png

針對較長序列的自回歸視頻擴展:3.1節(jié)提出了基于擴散模型的條件采樣梯度法,這是對[35]中替換方法的改進。表4展示了使用這兩種技術(shù)生成較長視頻的結(jié)果,由結(jié)果可得本文提出的方法在感知質(zhì)量分?jǐn)?shù)方面確實優(yōu)于替換方法。

3237c806-ba83-11ec-aa7f-dac502259ad0.png

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 視頻
    +關(guān)注

    關(guān)注

    6

    文章

    1946

    瀏覽量

    72920
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    19

    文章

    1935

    瀏覽量

    73455
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3244

    瀏覽量

    48849

原文標(biāo)題:視頻生成無需GAN、VAE,谷歌用擴散模型聯(lián)合訓(xùn)練視頻、圖像,實現(xiàn)新SOTA

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    【「大模型啟示錄」閱讀體驗】營銷領(lǐng)域模型的應(yīng)用

    今天跟隨「大模型啟示錄」這本書,學(xué)習(xí)在營銷領(lǐng)域應(yīng)用大模型。 大模型通過分析大量的消費者數(shù)據(jù),包括購買歷史、瀏覽記錄、社交媒體互動等,能夠識別消費者的偏好和行為模式。這種分析能力有助于企
    發(fā)表于 12-24 12:48

    【「大模型啟示錄」閱讀體驗】如何在客服領(lǐng)域應(yīng)用大模型

    客服領(lǐng)域是大模型落地場景中最多的,也是最容易實現(xiàn)的。本身客服領(lǐng)域的特點就是問答形式,大模型接入難度低。今天跟隨《大
    發(fā)表于 12-17 16:53

    浙大、微信提出精確反演采樣器新范式,徹底解決擴散模型反演問題

    隨著擴散生成模型的發(fā)展,人工智能步入了屬于?AIGC?的新紀(jì)元。擴散生成模型可以對初始高斯噪聲進行逐步去噪而得到高質(zhì)量的采樣。當(dāng)前,許多應(yīng)用都涉及
    的頭像 發(fā)表于 11-27 09:21 ?175次閱讀
    浙大、微信提出精確反演采樣器新范式,徹底解決<b class='flag-5'>擴散</b><b class='flag-5'>模型</b>反演問題

    擴散模型的理論基礎(chǔ)

    擴散模型的迅速崛起是過去幾年機器學(xué)習(xí)領(lǐng)域最大的發(fā)展之一。在這本簡單易懂的指南中,學(xué)習(xí)你需要知道的關(guān)于擴散模型的一切。
    的頭像 發(fā)表于 10-28 09:30 ?401次閱讀
    <b class='flag-5'>擴散</b><b class='flag-5'>模型</b>的理論基礎(chǔ)

    智源研究院揭曉大模型測評結(jié)果,豆包與百川智能大模型表現(xiàn)優(yōu)異

    多模態(tài)理解圖文問答任務(wù)中,開源和閉源模型表現(xiàn)相當(dāng),而國產(chǎn)模型表現(xiàn)出色。此外,中文語境下的文
    的頭像 發(fā)表于 05-20 09:26 ?748次閱讀

    【大語言模型:原理與工程實踐】大語言模型的評測

    安全性的評測則關(guān)注模型強化學(xué)習(xí)階段的表現(xiàn)。行業(yè)模型的評測則針對特定行業(yè)的能力,如金融和法律等領(lǐng)域。整體能力的評測從宏觀角度評估
    發(fā)表于 05-07 17:12

    【大語言模型:原理與工程實踐】揭開大語言模型的面紗

    。這一過程的不斷迭代使大語言模型的語言理解和生成能力逐步提升。大語言模型自然語言處理領(lǐng)域應(yīng)用廣泛,尤其問答系統(tǒng)和機器翻譯方面。它能理解用
    發(fā)表于 05-04 23:55

    OpenAI AI 生成視頻領(lǐng)域扔出一枚“王炸”,視頻生成模型“Sora”

    ABSTRACT摘要2月16日凌晨,也就是中國大年初七,OpenAIAI生成視頻領(lǐng)域扔出一枚“王炸”,宣布推出全新的生成式人工智能模型“Sora”。這家舊金山公司周四推出的該工具使用
    的頭像 發(fā)表于 02-22 08:25 ?391次閱讀
    OpenAI <b class='flag-5'>在</b> AI 生成<b class='flag-5'>視頻</b><b class='flag-5'>領(lǐng)域</b>扔出一枚“王炸”,<b class='flag-5'>視頻</b>生成<b class='flag-5'>模型</b>“Sora”

    OpenAI發(fā)布人工智能文生視頻模型Sora

    近日,人工智能領(lǐng)域的領(lǐng)軍企業(yè)OpenAI宣布推出其最新的人工智能文生視頻模型——Sora。這款模型繼承DALL-E 3卓越畫質(zhì)和遵循指令
    的頭像 發(fā)表于 02-20 13:54 ?869次閱讀

    OpenAI發(fā)布文生視頻模型Sora,開啟AI內(nèi)容創(chuàng)作新紀(jì)元

    近日,人工智能領(lǐng)域的領(lǐng)軍企業(yè)OpenAI在其官網(wǎng)上正式發(fā)布了名為Sora的文生視頻模型。這款模型具備根據(jù)用戶提示生成長達一分鐘視頻的能力,
    的頭像 發(fā)表于 02-20 13:44 ?665次閱讀

    OpenAI發(fā)布文生視頻模型Sora,引領(lǐng)AI視頻生成新紀(jì)元

    人工智能(AI)領(lǐng)域掀起新一輪革命浪潮的,正是OpenAI最新推出的文生視頻模型——Sora。這款被業(yè)界廣泛贊譽的模型,以其“逼真”和“
    的頭像 發(fā)表于 02-19 11:03 ?956次閱讀

    奧特曼發(fā)布王炸模型Sora OpenAI首個文生視頻模型Sora正式亮相

    ;可以說是王炸級的文生視頻模型。目前Sora模型正面向部分成員開放,以評估關(guān)鍵領(lǐng)域的潛在危害或風(fēng)險。 Sora是一種擴散
    的頭像 發(fā)表于 02-18 17:41 ?993次閱讀

    谷歌推出AI擴散模型Lumiere

    近日,谷歌研究院重磅推出全新AI擴散模型Lumiere,這款模型基于谷歌自主研發(fā)的“Space-Time U-Net”基礎(chǔ)架構(gòu),旨在實現(xiàn)視頻生成的一次性完成,同時保證
    的頭像 發(fā)表于 02-04 13:49 ?1039次閱讀

    谷歌推出能一次生成完整視頻擴散模型

    該公司指出,當(dāng)前眾多文生視頻模型普遍存在無法生成長時、高品質(zhì)及動作連貫的問題。這些模型往往采用“分段生成視頻”策略,即先生成少量關(guān)鍵幀,再借助時間超級分辨率(TSM)技術(shù)生成其間的
    的頭像 發(fā)表于 01-29 11:14 ?540次閱讀

    基于DiAD擴散模型的多類異常檢測工作

    現(xiàn)有的基于計算機視覺的工業(yè)異常檢測技術(shù)包括基于特征的、基于重構(gòu)的和基于合成的技術(shù)。最近,擴散模型因其強大的生成能力而聞名,因此本文作者希望通過擴散模型將異常區(qū)域重構(gòu)成正常。
    的頭像 發(fā)表于 01-08 14:55 ?1402次閱讀
    基于DiAD<b class='flag-5'>擴散</b><b class='flag-5'>模型</b>的多類異常檢測工作