0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法

新機(jī)器視覺(jué) ? 來(lái)源:量子位 ? 作者:Samuel Lynn-Evans ? 2022-04-13 08:35 ? 次閱讀

導(dǎo)讀

是什么秘訣讓新手們?cè)诙唐趦?nèi)快速掌握并能構(gòu)建最先進(jìn)的DL算法?一位名叫塞繆爾的法國(guó)學(xué)員總結(jié)了十條經(jīng)驗(yàn)。

在各種Kaggle競(jìng)賽的排行榜上,都有不少剛剛進(jìn)入深度學(xué)習(xí)領(lǐng)域的程序員,其中大部分有一個(gè)共同點(diǎn):

都上過(guò)Fast.ai的課程。

這些免費(fèi)、重實(shí)戰(zhàn)的課程非常鼓勵(lì)學(xué)生去參加Kaggle競(jìng)賽,檢驗(yàn)自己的能力。當(dāng)然,也向?qū)W生們傳授了不少稱霸Kaggle的深度學(xué)習(xí)技巧。

是什么秘訣讓新手們?cè)诙唐趦?nèi)快速掌握并能構(gòu)建最先進(jìn)的DL算法?一位名叫塞繆爾(Samuel Lynn-Evans)的法國(guó)學(xué)員總結(jié)了十條經(jīng)驗(yàn)。

他這篇文章發(fā)表在FloydHub官方博客上,因?yàn)槌藖?lái)自Fast.ai的技巧之外,他還用了FloydHub的免設(shè)置深度學(xué)習(xí)GPU云平臺(tái)。

接下來(lái),我們看看他從fast.ai學(xué)來(lái)的十大技藝:

1. 使用Fast.ai庫(kù)

這一條最為簡(jiǎn)單直接。

fromfast.aiimport*

Fast.ai庫(kù)是一個(gè)新手友好型的深度學(xué)習(xí)工具箱,而且是目前復(fù)現(xiàn)最新算法的首要之選。

每當(dāng)Fast.ai團(tuán)隊(duì)及AI研究者發(fā)現(xiàn)一篇有趣論文時(shí),會(huì)在各種數(shù)據(jù)集上進(jìn)行測(cè)試,并確定合適的調(diào)優(yōu)方法。他們會(huì)把效果較好的模型實(shí)現(xiàn)加入到這個(gè)函數(shù)庫(kù)中,用戶可以快速載入這些模型。

于是,F(xiàn)ast.ai庫(kù)成了一個(gè)功能強(qiáng)大的工具箱,能夠快速載入一些當(dāng)前最新的算法實(shí)現(xiàn),如帶重啟的隨機(jī)梯度下降算法、差分學(xué)習(xí)率和測(cè)試時(shí)增強(qiáng)等等,這里不逐一提及了。

下面會(huì)分別介紹這些技術(shù),并展示如何使用Fast.ai庫(kù)來(lái)快速使用它們。

這個(gè)函數(shù)庫(kù)是基于PyTorch構(gòu)建,構(gòu)建模型時(shí)可以流暢地使用。

Fast.ai庫(kù)地址:
https://github.com/fastai/fastai

2. 使用多個(gè)而不是單一學(xué)習(xí)率

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法

差分學(xué)習(xí)率(Differential Learning rates)意味著在訓(xùn)練時(shí)變換網(wǎng)絡(luò)層比提高網(wǎng)絡(luò)深度更重要。

基于已有模型來(lái)訓(xùn)練深度學(xué)習(xí)網(wǎng)絡(luò),這是一種被驗(yàn)證過(guò)很可靠的方法,可以在計(jì)算機(jī)視覺(jué)任務(wù)中得到更好的效果。

大部分已有網(wǎng)絡(luò)(如Resnet、VGG和Inception等)都是在ImageNet數(shù)據(jù)集訓(xùn)練的,因此我們要根據(jù)所用數(shù)據(jù)集與ImageNet圖像的相似性,來(lái)適當(dāng)改變網(wǎng)絡(luò)權(quán)重。

在修改這些權(quán)重時(shí),我們通常要對(duì)模型的最后幾層進(jìn)行修改,因?yàn)檫@些層被用于檢測(cè)基本特征(如邊緣和輪廓),不同數(shù)據(jù)集有著不同基本特征。

首先,要使用Fast.ai庫(kù)來(lái)獲得預(yù)訓(xùn)練的模型,代碼如下:

fromfastai.conv_learnerimport*

#importlibraryforcreatinglearningobjectforconvolutional#networks
model=VVG16()

#assignmodeltoresnet,vgg,orevenyourowncustommodel
PATH='./folder_containing_images'
data=ImageClassifierData.from_paths(PATH)

#createfastaidataobject,inthismethodweusefrom_pathswhere
#insidePATHeachimageclassisseparatedintodifferentfolders

learn=ConvLearner.pretrained(model,data,precompute=True)

#createalearnobjecttoquicklyutilisestateoftheart
#techniquesfromthefastailibrary

創(chuàng)建學(xué)習(xí)對(duì)象之后(learn object),通過(guò)快速凍結(jié)前面網(wǎng)絡(luò)層并微調(diào)后面網(wǎng)絡(luò)層來(lái)解決問(wèn)題:

learn.freeze()

#freezelayersuptothelastone,soweightswillnotbeupdated.

learning_rate=0.1
learn.fit(learning_rate,epochs=3)

#trainonlythelastlayerforafewepochs

當(dāng)后面網(wǎng)絡(luò)層產(chǎn)生了良好效果,我們會(huì)應(yīng)用差分學(xué)習(xí)率來(lái)改變前面網(wǎng)絡(luò)層。在實(shí)際中,一般將學(xué)習(xí)率的縮小倍數(shù)設(shè)置為10倍:

learn.unfreeze()

#setrequires_gradstobeTrueforalllayers,sotheycanbeupdated

learning_rate=[0.001,0.01,0.1]
#learningrateissetsothatdeepestthirdoflayershavearateof0.001,#middlelayershavearateof0.01,andfinallayers0.1.

learn.fit(learning_rate,epochs=3)
#trainmodelforthreeepochwithusingdifferentiallearningrates

3. 如何找到合適的學(xué)習(xí)率

學(xué)習(xí)率是神經(jīng)網(wǎng)絡(luò)訓(xùn)練中最重要的超參數(shù),沒(méi)有之一,但之前在實(shí)際應(yīng)用中很難為神經(jīng)網(wǎng)絡(luò)選擇最佳的學(xué)習(xí)率。

Leslie Smith的一篇周期性學(xué)習(xí)率論文發(fā)現(xiàn)了答案,這是一個(gè)相對(duì)不知名的發(fā)現(xiàn),直到它被Fast.ai課程推廣后才逐漸被廣泛使用。

這篇論文是:Cyclical Learning Rates for Training Neural Networks

https://arxiv.org/abs/1506.01186

在這種方法中,我們嘗試使用較低學(xué)習(xí)率來(lái)訓(xùn)練神經(jīng)網(wǎng)絡(luò),但是在每個(gè)批次中以指數(shù)形式增加,相應(yīng)代碼如下:

learn.lr_find()
#runonlearnobjectwherelearningrateisincreasedexponentially

learn.sched.plot_lr()
#plotgraphoflearningrateagainstiterations
如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 每次迭代后學(xué)習(xí)率以指數(shù)形式增長(zhǎng)

同時(shí),記錄每個(gè)學(xué)習(xí)率對(duì)應(yīng)的Loss值,然后畫出學(xué)習(xí)率和Loss值的關(guān)系圖:

learn.sched.plot()
#plotsthelossagainstthelearningrate
如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 找出Loss值在下降但仍未穩(wěn)定的點(diǎn)

通過(guò)找出學(xué)習(xí)率最高且Loss值仍在下降的值來(lái)確定最佳學(xué)習(xí)率。在上述情況中,該值將為0.01。

4. 余弦退火

在采用批次隨機(jī)梯度下降算法時(shí),神經(jīng)網(wǎng)絡(luò)應(yīng)該越來(lái)越接近Loss值的全局最小值。當(dāng)它逐漸接近這個(gè)最小值時(shí),學(xué)習(xí)率應(yīng)該變得更小來(lái)使得模型不會(huì)超調(diào)且盡可能接近這一點(diǎn)。

余弦退火(Cosine annealing)利用余弦函數(shù)來(lái)降低學(xué)習(xí)率,進(jìn)而解決這個(gè)問(wèn)題,如下圖所示:

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 余弦值隨著x增大而減小

從上圖可以看出,隨著x的增加,余弦值首先緩慢下降,然后加速下降,再次緩慢下降。這種下降模式能和學(xué)習(xí)率配合,以一種十分有效的計(jì)算方式來(lái)產(chǎn)生很好的效果。

learn.fit(0.1,1)
#Callinglearnfitautomaticallytakesadvantageofcosineannealing

我們可以用Fast.ai庫(kù)中的**learn.fit()**函數(shù),來(lái)快速實(shí)現(xiàn)這個(gè)算法,在整個(gè)周期中不斷降低學(xué)習(xí)率,如下圖所示:

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 在一個(gè)需要200次迭代的周期中學(xué)習(xí)率不斷降低

同時(shí),在這種方法基礎(chǔ)上,我們可以進(jìn)一步引入重啟機(jī)制。

5. 帶重啟的SGD算法

在訓(xùn)練時(shí),梯度下降算法可能陷入局部最小值,而不是全局最小值。

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 陷入局部最小值的梯度下降算法

梯度下降算法可以通過(guò)突然提高學(xué)習(xí)率,來(lái)“跳出”局部最小值并找到通向全局最小值的路徑。這種方式稱為帶重啟的隨機(jī)梯度下降方法(stochastic gradient descent with restarts,SGDR),這個(gè)方法在Loshchilov和Hutter的ICLR論文中展示出了很好的效果。

這篇論文是:SGDR: Stochastic Gradient Descent with Warm Restarts
https://arxiv.org/abs/1608.03983

用Fast.ai庫(kù)可以快速導(dǎo)入SGDR算法。當(dāng)調(diào)用learn.fit(learning_rate, epochs)函數(shù)時(shí),學(xué)習(xí)率在每個(gè)周期開(kāi)始時(shí)重置為參數(shù)輸入時(shí)的初始值,然后像上面余弦退火部分描述的那樣,逐漸減小。

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法

每當(dāng)學(xué)習(xí)率下降到最小點(diǎn),在上圖中為每100次迭代,我們稱為一個(gè)循環(huán)。

cycle_len=1
#decidehowmanyepochsittakesforthelearningratetofallto
#itsminimumpoint.Inthiscase,1epoch

cycle_mult=2
#attheendofeachcycle,multiplythecycle_lenvalueby2

learn.fit(0.1,3,cycle_len=2,cycle_mult=2)
#inthiscasetherewillbethreerestarts.Thefirsttimewith
#cycle_lenof1,soitwilltake1epochtocompletethecycle.
#cycle_mult=2sothenextcyclewithhavealengthoftwoepochs,
#andthenextfour.
如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 每個(gè)循環(huán)所包含的周期都是上一個(gè)循環(huán)的2倍

利用這些參數(shù),和使用差分學(xué)習(xí)率,這些技巧是Fast.ai用戶在圖像分類問(wèn)題上取得良好效果的關(guān)鍵。

Fast.ai論壇有個(gè)帖子專門討論Cycle_mult和cycle_len函數(shù),地址在這里:
http://forums.fast.ai/t/understanding-cycle-len-and-cycle-mult/9413/8

更多關(guān)于學(xué)習(xí)率的詳細(xì)內(nèi)容可參考這個(gè)Fast.ai課程:
http://course.fast.ai/lessons/lesson2.html

6. 人格化你的激活函數(shù)

Softmax只喜歡選擇一樣?xùn)|西;

Sigmoid想知道你在[-1, 1]區(qū)間上的位置,并不關(guān)心你超出這些值后的增加量;

Relu是一名俱樂(lè)部保鏢,要將負(fù)數(shù)拒之門外。

……

以這種思路對(duì)待激活函數(shù),看起來(lái)很愚蠢,但是安排一個(gè)角色后能確保把他們用到正確任務(wù)中。

正如fast.ai創(chuàng)始人Jeremy Howard指出,不少學(xué)術(shù)論文中也把Softmax函數(shù)用在多分類問(wèn)題中。在DL學(xué)習(xí)過(guò)程中,我也看到它在論文和博客中多次使用不當(dāng)。

7. 遷移學(xué)習(xí)在NLP問(wèn)題中非常有效

正如預(yù)訓(xùn)練好的模型在計(jì)算機(jī)視覺(jué)任務(wù)中很有效一樣,已有研究表明,自然語(yǔ)言處理(NLP)模型也可以從這種方法中受益。

在Fast.ai第4課中,Jeremy Howard用遷移學(xué)習(xí)方法建立了一個(gè)模型,來(lái)判斷IMDB上的電影評(píng)論是積極的還是消極的。

這種方法的效果立竿見(jiàn)影,他所達(dá)到的準(zhǔn)確率超過(guò)了Salesforce論文中展示的所有先前模型:
https://einstein.ai/research/learned-in-translation-contextualized-word-vectors。

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 預(yù)先存在的架構(gòu)提供了最先進(jìn)的NLP性能

這個(gè)模型的關(guān)鍵在于先訓(xùn)練模型來(lái)獲得對(duì)語(yǔ)言的一些理解,然后再使用這種預(yù)訓(xùn)練好的模型作為新模型的一部分來(lái)分析情緒。

為了創(chuàng)建第一個(gè)模型,我們訓(xùn)練了一個(gè)循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)來(lái)預(yù)測(cè)文本序列中的下個(gè)單詞,這稱為語(yǔ)言建模。當(dāng)訓(xùn)練后網(wǎng)絡(luò)的準(zhǔn)確率達(dá)到一定值,它對(duì)每個(gè)單詞的編碼模式就會(huì)傳遞給用于情感分析的新模型。

在上面的例子中,我們看到這個(gè)語(yǔ)言模型與另一個(gè)模型集成后用于情感分析,但是這種方法可以應(yīng)用到其他任何NLP任務(wù)中,包括翻譯數(shù)據(jù)提取。

而且,計(jì)算機(jī)視覺(jué)中的一些技巧,也同樣適用于此,如上面提到的凍結(jié)網(wǎng)絡(luò)層和使用差分學(xué)習(xí)率,在這里也能取得更好的效果。

這種方法在NLP任務(wù)上的使用涉及很多細(xì)節(jié),這里就不貼出代碼了,可訪問(wèn)相應(yīng)課程和代碼。

課程:
http://course.fast.ai/lessons/lesson4.html

代碼:https://github.com/fastai/fastai/blob/master/courses/dl1/lesson4-imdb.ipynb

8. 深度學(xué)習(xí)在處理結(jié)構(gòu)化數(shù)據(jù)上的優(yōu)勢(shì)

Fast.ai課程中展示了深度學(xué)習(xí)在處理結(jié)構(gòu)化數(shù)據(jù)上的突出表現(xiàn),且無(wú)需借助特征工程以及領(lǐng)域內(nèi)的特定知識(shí)。

這個(gè)庫(kù)充分利用了PyTorch中embedding函數(shù),允許將分類變量快速轉(zhuǎn)換為嵌入矩陣。

他們展示出的技術(shù)比較簡(jiǎn)單直接,只需將分類變量轉(zhuǎn)換為數(shù)字,然后為每個(gè)值分配嵌入向量:

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 一周中的每一天都嵌入了四個(gè)值

在這類任務(wù)上,傳統(tǒng)做法是創(chuàng)建虛擬變量,即進(jìn)行一次熱編碼。與之相比,這種方式的優(yōu)點(diǎn)是用四個(gè)數(shù)值代替一個(gè)數(shù)值來(lái)描述每一天,因此可獲得更高的數(shù)據(jù)維度和更豐富的關(guān)系。

這種方法在Rossman Kaggle比賽中獲得第三名,惜敗于兩位利用專業(yè)知識(shí)來(lái)創(chuàng)建許多額外特征的領(lǐng)域?qū)<摇?/p>

相關(guān)課程:
http://course.fast.ai/lessons/lesson4.html

代碼:
https://github.com/fastai/fastai/blob/master/courses/dl1/lesson3-rossman.ipynb

這種用深度學(xué)習(xí)來(lái)減少對(duì)特征工程依賴的思路,也被Pinterest證實(shí)過(guò)。他也提到過(guò),他們正努力通過(guò)深度學(xué)習(xí)模型,期望用更少的工作量來(lái)獲得更好的效果。

9. 更多內(nèi)置函數(shù):Dropout層、尺寸設(shè)置、TTA

4月30日,F(xiàn)ast.ai團(tuán)隊(duì)在斯坦福大學(xué)舉辦的DAWNBench競(jìng)賽中,贏得了基于Imagenet和CIFAR10的分類任務(wù)。在Jeremy的奪冠總結(jié)中,他將這次成功歸功于fast.ai庫(kù)中的一些額外函數(shù)。

其中之一是Dropout層,由Geoffrey Hinton兩年前在一篇開(kāi)創(chuàng)性的論文中提出。它最初很受歡迎,但在最近的計(jì)算機(jī)視覺(jué)論文中似乎有所忽略。這篇論文是:

Dropout: A Simple Way to Prevent Neural Networks from Overfitting:

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

然而,PyTorch庫(kù)使它的實(shí)現(xiàn)變得很簡(jiǎn)單,用Fast.ai庫(kù)加載它就更容易了。

如何快速掌握并能構(gòu)建最先進(jìn)的DL算法△ 空格表示Dropout函數(shù)的作用點(diǎn)

Dropout函數(shù)能減弱過(guò)擬合效應(yīng),因此要在CIFAR-10這樣一個(gè)相對(duì)較小的數(shù)據(jù)集上取勝,這點(diǎn)很重要。在創(chuàng)建learn對(duì)象時(shí),F(xiàn)ast.ai庫(kù)會(huì)自動(dòng)加入dropout函數(shù),同時(shí)可使用ps變量來(lái)修改參數(shù),如下所示:

learn=ConvLearner.pretrained(model,data,ps=0.5,precompute=True)
#createsadropoutof0.5(i.e.halftheactivations)ontestdataset.
#Thisisautomaticallyturnedoffforthevalidationset

有一種很簡(jiǎn)單有效的方法,經(jīng)常用來(lái)處理過(guò)擬合效應(yīng)和提高準(zhǔn)確性,它就是訓(xùn)練小尺寸圖像,然后增大尺寸再次訓(xùn)練相同模型。

#createadataobjectwithimagesofsz*szpixels
defget_data(sz):
tmfs=tfms_from_model(model,sz)
#tellswhatsizeimagesshouldbe,additionaltransformationssuch
#imageflipsandzoomscaneasilybeaddedheretoo

data=ImageClassifierData.from_paths(PATH,tfms=tfms)
#createsfastaidataobjectofcreatesize

returndata

learn.set_data(get_data(299))
#changesthedatainthelearnobjecttobeimagesofsize299
#withoutchangingthemodel.

learn.fit(0.1,3)
#trainforafewepochsonlargerversionsofimages,avoidingoverfitting

還有一種先進(jìn)技巧,可將準(zhǔn)確率提高若干個(gè)百分點(diǎn),它就是測(cè)試時(shí)增強(qiáng)(test time augmentation,TTA)。這里會(huì)為原始圖像造出多個(gè)不同版本,包括不同區(qū)域裁剪和更改縮放程度等,并將它們輸入到模型中;然后對(duì)多個(gè)版本進(jìn)行計(jì)算得到平均輸出,作為圖像的最終輸出分?jǐn)?shù),可調(diào)用learn.TTA()來(lái)使用該算法。

preds,target=learn.TTA()

這種技術(shù)很有效,因?yàn)樵紙D像顯示的區(qū)域可能會(huì)缺少一些重要特征,在模型中輸入圖像的多個(gè)版本并取平均值,能解決上述問(wèn)題。

10. 創(chuàng)新力很關(guān)鍵

在DAWNBench比賽中,F(xiàn)ast.ai團(tuán)隊(duì)提出的模型不僅速度最快,而且計(jì)算成本低。要明白,要構(gòu)建成功的DL應(yīng)用,不只是一個(gè)利用大量GPU資源的計(jì)算任務(wù),而應(yīng)該是一個(gè)需要?jiǎng)?chuàng)造力、直覺(jué)和創(chuàng)新力的問(wèn)題。

本文中討論的一些突破,包括Dropout層、余弦退火和帶重啟的SGD方法等,實(shí)際上是研究者針對(duì)一些問(wèn)題想到的不同解決方式。與簡(jiǎn)單地增大訓(xùn)練數(shù)據(jù)集相比,能更好地提升準(zhǔn)確率。

硅谷的很多大公司有大量GPU資源,但是,不要認(rèn)為他們的先進(jìn)效果遙不可及,你也能靠創(chuàng)新力提出一些新思路,來(lái)挑戰(zhàn)效果排行榜。

事實(shí)上,有時(shí)計(jì)算力的局限也是一種機(jī)會(huì),因?yàn)樾枨笫莿?chuàng)新的動(dòng)力源泉。

關(guān)于作者

Samuel Lynn-Evans過(guò)去10年一直在教授生命科學(xué)課程,注意到機(jī)器學(xué)習(xí)在科學(xué)研究中的巨大潛力后,他開(kāi)始在巴黎42學(xué)校學(xué)習(xí)人工智能,想將NLP技術(shù)應(yīng)用到生物學(xué)和醫(yī)學(xué)問(wèn)題中。

原文標(biāo)題:關(guān)于作者

文章出處:【微信公眾號(hào):機(jī)器視覺(jué)智能檢測(cè)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

審核編輯:湯梓紅


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4740

    瀏覽量

    128951
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4612

    瀏覽量

    92901
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5503

    瀏覽量

    121170

原文標(biāo)題:關(guān)于作者

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    先進(jìn)算法講義

    先進(jìn)算法講義在本講義中,我們將著重講述一些數(shù)學(xué)建模中常用的算法,包括神經(jīng)網(wǎng)絡(luò)算法、遺傳算法、模擬退火算法
    發(fā)表于 09-15 12:33

    λ算法 - 瑞薩先進(jìn)電機(jī)控制解決方案

    變得尤為重要。針對(duì)中國(guó)市場(chǎng),瑞薩在積極推廣高性能,低功耗RX單片機(jī)的同時(shí),還開(kāi)發(fā)了完全自主知識(shí)產(chǎn)權(quán)的先進(jìn)電機(jī)控制解決方案 - λ算法,用以構(gòu)建高性能、高可靠性的永磁同步電動(dòng)機(jī)的驅(qū)動(dòng)解決方案,幫助客戶開(kāi)發(fā)
    發(fā)表于 01-22 10:51

    最先進(jìn)的數(shù)字CMOS圖像傳感器MIS1011(兼容AR0130)

    MIS1011 是最先進(jìn)的130萬(wàn)像素,數(shù)字CMOS圖像傳感器,兼容AR0130,特別在低照時(shí)要比APTINA的AR0130還要清晰。
    發(fā)表于 08-27 13:09

    TI-RTOS 2.12的最先進(jìn)電源管理軟件

    今天,我們推出了TI-RTOS 2.12 —— 我們用來(lái)加快開(kāi)發(fā)物聯(lián)網(wǎng)(IoT)應(yīng)用的軟件平臺(tái)。對(duì)許多IoT應(yīng)用而言,電池壽命均是一個(gè)關(guān)鍵的優(yōu)劣區(qū)分因素,因此,TI-RTOS的最先進(jìn)電源管理軟件使
    發(fā)表于 09-10 15:16

    安捷倫科技公司推出業(yè)界最先進(jìn)的固定配置邏輯分析儀

    安捷倫科技公司推出業(yè)界最先進(jìn)的固定配置邏輯分析儀
    發(fā)表于 09-29 10:20

    掌握PID算法

    掌握PID算法?要深刻理解反饋機(jī)構(gòu)和執(zhí)行機(jī)構(gòu)PID算法,不管是原理上,還是代碼上都比較簡(jiǎn)單。主要運(yùn)用在電機(jī)控制、開(kāi)關(guān)電源、電源管理芯片等領(lǐng)域。 PID算法,不管是原理上,還是代碼上都比
    發(fā)表于 09-13 06:20

    業(yè)內(nèi)最先進(jìn)的RealSSDTM固態(tài)硬盤(SSD)C400

    美光科技 (Micron)針對(duì)不斷增長(zhǎng)的基于閃存的筆記本電腦市場(chǎng)推出了業(yè)內(nèi)最先進(jìn)的RealSSDTM固態(tài)硬盤(SSD)新產(chǎn)品組合。一種新型的筆記本電腦正在進(jìn)入市場(chǎng),由于其采用了以閃存為基礎(chǔ)的存儲(chǔ)產(chǎn)品的創(chuàng)新思維,從而具有輕質(zhì)的結(jié)構(gòu),快速的系統(tǒng)響應(yīng)能力和更持久耐用的
    發(fā)表于 02-26 09:26 ?2067次閱讀

    先進(jìn)算法講義

    各種算法的,如:神經(jīng)網(wǎng)絡(luò)。蟻群算法,等一些先進(jìn)算法。
    發(fā)表于 05-19 14:31 ?0次下載

    最先進(jìn)的電池充電器

    voicor batmod最先進(jìn)的電池充電器
    發(fā)表于 06-02 15:41 ?39次下載

    東芝模擬分叉算法最先進(jìn)超算還要好

    計(jì)算效率是評(píng)判算法優(yōu)劣的一個(gè)重要指標(biāo),然而日本著名跨國(guó)集團(tuán)東芝近日聲稱,其打造了一套可比當(dāng)今最先進(jìn)的超算還要更快地分析市場(chǎng)數(shù)據(jù)的新算法。
    的頭像 發(fā)表于 01-17 15:34 ?2901次閱讀
    東芝模擬分叉<b class='flag-5'>算法</b>比<b class='flag-5'>最先進(jìn)</b>超算還要好

    MICRON Inside 1α:世界上最先進(jìn)的DRAM技術(shù)

    MICRON最近宣布,我們正在發(fā)貨使用全球最先進(jìn)的DRAM工藝制造的存儲(chǔ)芯片。這個(gè)過(guò)程被神秘地稱為“1α”(1-alpha)。這是什么意思,有多神奇?
    發(fā)表于 09-15 17:00 ?2223次閱讀

    世界上最先進(jìn)的數(shù)字Magic 8 Ball玩具

    電子發(fā)燒友網(wǎng)站提供《世界上最先進(jìn)的數(shù)字Magic 8 Ball玩具.zip》資料免費(fèi)下載
    發(fā)表于 11-18 12:00 ?0次下載
    世界上<b class='flag-5'>最先進(jìn)</b>的數(shù)字Magic 8 Ball玩具

    中國(guó)最先進(jìn)的***是多少納米?

    中國(guó)在芯片制造領(lǐng)域一直在追趕先進(jìn)的技術(shù),雖然在一些關(guān)鍵技術(shù)方面還存在一定差距,但近年來(lái)中國(guó)在光刻機(jī)領(lǐng)域取得了一些進(jìn)展,下面將詳細(xì)介紹中國(guó)目前最先進(jìn)的光刻機(jī)是多少納米。
    的頭像 發(fā)表于 04-24 15:10 ?6.2w次閱讀

    中國(guó)目前最先進(jìn)的***是哪個(gè)?

    中國(guó)目前最先進(jìn)的國(guó)產(chǎn)芯片是哪個(gè)呢?
    的頭像 發(fā)表于 05-29 09:44 ?2w次閱讀

    英業(yè)達(dá)推出 P8000IG6 - 為AI和HPC工作負(fù)載的最先進(jìn)平臺(tái)

    基于 NVIDIA? HGX??人工智能(AI)超級(jí)計(jì)算平臺(tái)所構(gòu)建的服務(wù)器,旨在實(shí)現(xiàn)高靈活性和可擴(kuò)展性,協(xié)助數(shù)據(jù)中心能夠針對(duì)最先進(jìn)的工作負(fù)載快速、無(wú)縫地進(jìn)行擴(kuò)展。 臺(tái)北2024年4月8日 /美通社
    的頭像 發(fā)表于 04-08 16:28 ?598次閱讀