0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

根據(jù)SCI輸入信號(hào)自動(dòng)校準(zhǔn)波特率

電子設(shè)計(jì) ? 來(lái)源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2022-01-12 13:56 ? 次閱讀

作者:Terry Deng

本文檔概述了一種基于 SCI/UART 輸入信號(hào),可以自動(dòng)校準(zhǔn)本設(shè)備SCI/UART波特率的方法,該方法適用與所有第三代C2000芯片,比如F2807x/37x,F(xiàn)28004x,F(xiàn)28002x等等。

一 原理說(shuō)明

假設(shè)有2塊電路板通過(guò)SCI進(jìn)行通信?!癟ransmitter”向“Receiver”發(fā)送未知波特率的數(shù)據(jù),“ Receiver”則使用 eCAP 測(cè)量未知的波特率,然后修改其自身的波特率和“Transmitter”匹配。

下面款圖是一種情況,其中“Transmitter” 的波特率設(shè)置為 9889,而“Receiver”的初始波特率設(shè)置為 9601 ,相比之下“Receiver”的波特率為 -3% 偏差。 經(jīng)過(guò)算法的自動(dòng)校準(zhǔn)以后,“Receiver”將會(huì)把自身波特率校正為與“Transmitter”相同的9889。

下面框圖則是另一種情況,假如“Receiver”和“Transmitter”的初始波特率都是9889,但“Receiver”的內(nèi)部晶振INTOSC有-3%的偏差。使用上述完全相同的方法原理和步驟,“Receiver”波特率設(shè)置將會(huì)從9889校準(zhǔn)成9601,這樣“Receiver”的波特率設(shè)置被自動(dòng)校準(zhǔn)抵消內(nèi)部晶振的偏差。在測(cè)量實(shí)際信號(hào)時(shí),“Receiver”輸出到“Transmitter”的信號(hào)會(huì)是正確的 9889 波特率。

二 Receiver 的校準(zhǔn)代碼

1. 初始化

需要配置以下模塊來(lái)校準(zhǔn)波特率:

#define DEVICE_SETCLOCK_CFG      (SYSCTL_OSCSRC_OSC2 | SYSCTL_IMULT(20) |  \
                                     SYSCTL_FMULT_NONE | SYSCTL_SYSDIV(2) |   \
                                     SYSCTL_PLL_ENABLE)
    //
    // Set up PLL control and clock dividers
    //
    SysCtl_setClock(DEVICE_SETCLOCK_CFG);

    //
    // Make sure the LSPCLK divider is set to the default (divide by 4)
    //
    SysCtl_setLowSpeedClock(SYSCTL_LSPCLK_PRESCALE_1);
  • SCI 模塊:通訊數(shù)據(jù)使用,發(fā)出校準(zhǔn)以后的波形

    // Initialize SCIA and its FIFO.
    //
    SCI_performSoftwareReset(SCIA_BASE);

    //
    // Configure SCIA for communications.
    //
    SCI_setConfig(SCIA_BASE, DEVICE_LSPCLK_FREQ, TARGETBAUD, (SCI_CONFIG_WLEN_8 |
                                                        SCI_CONFIG_STOP_ONE |
                                                        SCI_CONFIG_PAR_NONE));
    SCI_resetChannels(SCIA_BASE);
    SCI_resetRxFIFO(SCIA_BASE);
    SCI_resetTxFIFO(SCIA_BASE);
    SCI_clearInterruptStatus(SCIA_BASE, SCI_INT_TXFF | SCI_INT_RXFF);
    SCI_enableFIFO(SCIA_BASE);
    SCI_enableModule(SCIA_BASE);
SCI_performSoftwareReset(SCIA_BASE);
  • Xbar 輸入:將 GPIO28/SCI 內(nèi)部連接到 INPUTXBAR7 與 ECAP1 配合使用

//
    // Configure GPIO 28 as eCAP input
    //
    XBAR_setInputPin(XBAR_INPUT7, 28);
  • ECAP 模塊:監(jiān)控接收到的 SCI 通信脈沖寬度

//
    // Disable ,clear all capture flags and interrupts
    //
    ECAP_disableInterrupt(ECAP1_BASE,
                          (ECAP_ISR_SOURCE_CAPTURE_EVENT_1  |
                           ECAP_ISR_SOURCE_CAPTURE_EVENT_2  |
                           ECAP_ISR_SOURCE_CAPTURE_EVENT_3  |
                           ECAP_ISR_SOURCE_CAPTURE_EVENT_4  |
                           ECAP_ISR_SOURCE_COUNTER_OVERFLOW |
                           ECAP_ISR_SOURCE_COUNTER_PERIOD   |
                           ECAP_ISR_SOURCE_COUNTER_COMPARE));
    ECAP_clearInterrupt(ECAP1_BASE,
                        (ECAP_ISR_SOURCE_CAPTURE_EVENT_1  |
                         ECAP_ISR_SOURCE_CAPTURE_EVENT_2  |
                         ECAP_ISR_SOURCE_CAPTURE_EVENT_3  |
                         ECAP_ISR_SOURCE_CAPTURE_EVENT_4  |
                         ECAP_ISR_SOURCE_COUNTER_OVERFLOW |
                         ECAP_ISR_SOURCE_COUNTER_PERIOD   |
                         ECAP_ISR_SOURCE_COUNTER_COMPARE));

    //
    // Disable CAP1-CAP4 register loads
    //
    ECAP_disableTimeStampCapture(ECAP1_BASE);

    //
    // Configure eCAP
    //    Enable capture mode.
    //    One shot mode, stop capture at event 4.
    //    Set polarity of the events to rising, falling, rising, falling edge.
    //    Set capture in time difference mode.
    //    Select input from XBAR7.
    //    Enable eCAP module.
    //    Enable interrupt.
    //
    ECAP_stopCounter(ECAP1_BASE);
    ECAP_enableCaptureMode(ECAP1_BASE);
    ECAP_setCaptureMode(ECAP1_BASE, ECAP_ONE_SHOT_CAPTURE_MODE, ECAP_EVENT_4);

    ECAP_setEventPolarity(ECAP1_BASE, ECAP_EVENT_1, ECAP_EVNT_FALLING_EDGE);
    ECAP_setEventPolarity(ECAP1_BASE, ECAP_EVENT_2, ECAP_EVNT_RISING_EDGE);
    ECAP_setEventPolarity(ECAP1_BASE, ECAP_EVENT_3, ECAP_EVNT_FALLING_EDGE);
    ECAP_setEventPolarity(ECAP1_BASE, ECAP_EVENT_4, ECAP_EVNT_RISING_EDGE);

    ECAP_enableCounterResetOnEvent(ECAP1_BASE, ECAP_EVENT_1);
    ECAP_enableCounterResetOnEvent(ECAP1_BASE, ECAP_EVENT_2);
    ECAP_enableCounterResetOnEvent(ECAP1_BASE, ECAP_EVENT_3);
    ECAP_enableCounterResetOnEvent(ECAP1_BASE, ECAP_EVENT_4);

    ECAP_selectECAPInput(ECAP1_BASE, ECAP_INPUT_INPUTXBAR7);

    ECAP_enableLoadCounter(ECAP1_BASE);
    ECAP_setSyncOutMode(ECAP1_BASE, ECAP_SYNC_OUT_DISABLED);
    ECAP_startCounter(ECAP1_BASE);
    ECAP_enableTimeStampCapture(ECAP1_BASE);
    ECAP_reArm(ECAP1_BASE);

    ECAP_enableInterrupt(ECAP1_BASE, ECAP_ISR_SOURCE_CAPTURE_EVENT_4);

2. 中斷

捕獲傳入 SCI 通信的脈沖寬度,每捕獲 4 次就中斷一次。 將這 4 個(gè)捕獲添加到陣列中。

__interrupt void ecap1ISR(void)
{
    if(stopCaptures==0)
    {
        //
        // Get the capture counts, interrupt every 4. Can be 1-bit or more wide.
        // add one to account for partial eCAP counts at higher baud rates
        // (e.g. count = 40, but if had higher resolution, this would be 40.5)
        //
        capCountArr[0] = 1+ECAP_getEventTimeStamp(ECAP1_BASE, ECAP_EVENT_1);
        capCountArr[1] = 1+ECAP_getEventTimeStamp(ECAP1_BASE, ECAP_EVENT_2);
        capCountArr[2] = 1+ECAP_getEventTimeStamp(ECAP1_BASE, ECAP_EVENT_3);
        capCountArr[3] = 1+ECAP_getEventTimeStamp(ECAP1_BASE, ECAP_EVENT_4);

        //
        // Add samples to a buffer. Get average baud and tune INTOSC if buffer filled.
        //
        capCountIter = 0;
        for (capCountIter=0; capCountIter<4; capCountIter++)
        {
            //
            // if we still have samples left to capture, add it to the samples array
            //
            if(samplesArrIter

捕獲陣列滿后,計(jì)算陣列的平均脈沖寬度 (也就是波特率),并更新SCI波特率寄存器,使其盡可能接近計(jì)算的平均值。

//
    // Loop forever. Suspend or place breakpoints to observe the buffers.
    //
    for(;;)
    {
        //
        // Array is filled, begin tuning
        //
        if(stopCaptures==1)
        {
            //
            // Get an average baud rate from the array of samples
            //
            uint32_t avgBaud = getAverageBaud(samplesArr,NUMSAMPLES,TARGETBAUD);

            //
            // if the baud function returns the error code '0', then flag an error
            //
            if(avgBaud==0)
            {
                ESTOP0;
            }

            //
            // Update the device's baud rate to match the measured baud rate
            //
            SCI_setBaud(SCIA_BASE, DEVICE_LSPCLK_FREQ, avgBaud);

            //
            // (OPTIONAL) Continuously send data to SCITX once tuning
            // is complete for external observation (by logic analyzer or scope)
            //
            //unsigned char *msg;
            //while(1)
            //{
            //    msg = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\0";
            //    SCI_writeCharArray(SCIA_BASE, (uint16_t*)msg, 91);
            //}

            //
            // Wait for user to view the results in "Expressions" window
            //
            ESTOP0;

            //
            // If continuing, reset the array iterator and unlock the ISR for new captures
            //
            samplesArrIter=0;
            stopCaptures=0;
        }
}

4. 平均脈沖寬度

對(duì)于許多應(yīng)用的SCI 通信,傳輸?shù)臄?shù)據(jù) (例如 0xA5)是變化不固定的,因此SCI的高低電平脈沖寬度就是變化的。所以必須對(duì)樣本陣列進(jìn)行如下的預(yù)處理,然后才能計(jì)算平均脈沖寬度。

a) 丟棄大于 10 位寬的脈沖寬度 (丟棄空閑時(shí)間)

b) 將 n 位值除以 n

c) 對(duì)修改后的樣本數(shù)組進(jìn)行平均化

uint32_t getAverageBaud(volatile float arr[], int size, float targetBaudRate)
{
    //
    // clean up variable width array to single-bit-width array
    //
    uint16_t pass = arrTo1PulseWidth(arr, size, (float)DEVICE_SYSCLK_FREQ/targetBaudRate);

    //
    // pass only if enough good samples provided
    //
    if(pass == 0)
    {
        return 0;
    }

    //
    // convert 2-bit width, 3-bit width, etc. to 1-bit width values by dividing, and average these values.
    // skip unrelated values
    //
    float averageBitWidth = computeAvgWidth(arr, size);

    //
    // get the rounded baud rate from the average number of clocks and the sysclk frequency
    //
    return (uint32_t)(((float)DEVICE_SYSCLK_FREQ/(float)averageBitWidth)+0.5);
}

以下是平均脈寬計(jì)算的原理和代碼流程圖

)>

poYBAGGKRRaAJv7wAABId9BaVcc607.png

pYYBAGGKRRiAVuqrAAA6HkSAzxQ298.png

三 結(jié)果

按照以下設(shè)置進(jìn)行測(cè)試,結(jié)果詳見(jiàn)表格,校準(zhǔn)以后的誤差從3% 改善為0.1%左右甚至更小。

  1. “Transmitter”設(shè)置為正確的波特率 (我們嘗試匹配的波特率)
  2. “Receiver”設(shè)置為錯(cuò)誤波特率 (-3% +3%)
  3. “Receiver”運(yùn)行校準(zhǔn)程序以匹配“Transmitter

100K 波特

9601波特率

-3%

+3%

-3%

+3%

Transmitter

(我們正在嘗試匹配的內(nèi)容)

理想波特率

(僅供參考)

103306

96899

9889

9314.

實(shí)際波特率

(必須與此匹配)

104174.

96906

9890

9315.

Receiver

(初始錯(cuò)誤波特率)

波特率

(校準(zhǔn)前)

100154.

100157.

9622.

9622.

出錯(cuò)百分比

(校準(zhǔn)前)

-3.859%

3.355%

-2.706%

3.296%

Receiver

(校準(zhǔn)后波特率)

波特率

(校準(zhǔn)后)

104336.

97047.

9888

9314.

出錯(cuò)百分比

(校準(zhǔn)后)

0.156%

0.146%

-0.016%

審核編輯:金巧
)>
聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 嵌入式處理
    +關(guān)注

    關(guān)注

    0

    文章

    341

    瀏覽量

    10264
  • uart
    +關(guān)注

    關(guān)注

    22

    文章

    1270

    瀏覽量

    103353
  • SCI
    SCI
    +關(guān)注

    關(guān)注

    1

    文章

    57

    瀏覽量

    20436
收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    RS232通信的波特率設(shè)置說(shuō)明

    RS232通信中,波特率的選擇需要根據(jù)設(shè)備的通信能力和通信距離來(lái)確定。 二、波特率的設(shè)置范圍 RS232通信的波特率可以設(shè)置多種不同的速率,常見(jiàn)的
    的頭像 發(fā)表于 12-10 16:26 ?3833次閱讀

    波特率設(shè)置中的常見(jiàn)問(wèn)題解析

    在數(shù)字通信系統(tǒng)中,波特率是一個(gè)關(guān)鍵參數(shù),它直接影響數(shù)據(jù)傳輸?shù)男屎涂煽啃?。然而,在?shí)際應(yīng)用中,波特率的設(shè)置往往會(huì)引起一些常見(jiàn)的問(wèn)題。 一、波特率與數(shù)據(jù)速率的混淆 問(wèn)題描述: 許多人會(huì)將波特率
    的頭像 發(fā)表于 11-22 10:06 ?1476次閱讀

    波特率與串行通信的關(guān)系 各種設(shè)備波特率轉(zhuǎn)換的方法

    波特率(Baud Rate)是串行通信中的一個(gè)重要參數(shù),它指的是信號(hào)傳輸?shù)乃俾?,即單位時(shí)間內(nèi)傳輸?shù)姆?hào)(或信號(hào)狀態(tài))的數(shù)量。在串行通信中,波特率決定了數(shù)據(jù)傳輸?shù)乃俣?,因此?duì)于通信效率和
    的頭像 發(fā)表于 11-22 10:01 ?1503次閱讀

    常見(jiàn)的波特率標(biāo)準(zhǔn)和協(xié)議

    波特率是指在數(shù)據(jù)通信中,每秒鐘傳輸?shù)姆?hào)數(shù)(或比特?cái)?shù)),是衡量數(shù)據(jù)通信速度的重要指標(biāo)。在不同的通信協(xié)議和場(chǎng)景中,常見(jiàn)的波特率標(biāo)準(zhǔn)和協(xié)議有所不同。以下是一些常見(jiàn)的波特率標(biāo)準(zhǔn)和協(xié)議: 一、串口通信
    的頭像 發(fā)表于 11-22 09:56 ?5428次閱讀

    Wi-Fi與藍(lán)牙的波特率對(duì)比分析

    Wi-Fi與藍(lán)牙是兩種不同的無(wú)線通信技術(shù),它們?cè)?b class='flag-5'>波特率(或稱(chēng)數(shù)據(jù)傳輸速率)方面存在顯著的差異。以下是對(duì)Wi-Fi與藍(lán)牙波特率的對(duì)比分析: 一、Wi-Fi的波特率 概述 : Wi-Fi(無(wú)線局域網(wǎng)
    的頭像 發(fā)表于 11-22 09:54 ?1642次閱讀

    波特率設(shè)置在串口通信中的重要性

    在現(xiàn)代通信技術(shù)中,串口通信作為一種基本的數(shù)據(jù)傳輸方式,扮演著不可或缺的角色。無(wú)論是在計(jì)算機(jī)與外部設(shè)備的連接,還是在工業(yè)自動(dòng)化系統(tǒng)中的數(shù)據(jù)交換,串口通信都發(fā)揮著重要作用。波特率,作為串口通信中的關(guān)鍵
    的頭像 發(fā)表于 11-22 09:51 ?2703次閱讀

    波特率的定義和計(jì)算方法 波特率與數(shù)據(jù)傳輸速度的關(guān)系

    波特率的定義 波特率(Baud Rate),又稱(chēng)調(diào)制速率或傳符號(hào),是指每秒傳輸?shù)姆?hào)數(shù)目,單位為波特(Bd)。它是一個(gè)數(shù)字信號(hào)通信中重要的
    的頭像 發(fā)表于 11-22 09:49 ?8383次閱讀

    MCU串口自動(dòng)識(shí)別波特率原理分析

    現(xiàn)在的單片機(jī)資源越來(lái)越豐富了,其中我們常用的串口也是內(nèi)部集成了多個(gè),關(guān)鍵功能也越來(lái)越強(qiáng)了。 我們有些應(yīng)用可能會(huì)用到串口自動(dòng)識(shí)別波特率,今天就來(lái)講講MCU串口自動(dòng)識(shí)別波特率底層的常見(jiàn)的原
    的頭像 發(fā)表于 10-23 16:12 ?1866次閱讀
    MCU串口<b class='flag-5'>自動(dòng)</b>識(shí)別<b class='flag-5'>波特率</b>原理分析

    波特率9600和115200的區(qū)別

    限性。 1. 波特率的定義與計(jì)算 波特率,或稱(chēng)為波特,是衡量數(shù)據(jù)傳輸速率的單位,它表示每秒鐘傳輸?shù)?b class='flag-5'>信號(hào)單元數(shù)。在串行通信中,一個(gè)信號(hào)單元可以
    的頭像 發(fā)表于 10-18 14:56 ?5093次閱讀

    波特率與比特有何關(guān)系 波特率與數(shù)據(jù)傳輸速率的關(guān)系

    波特率(Baud Rate)和比特(Bit Rate)是衡量數(shù)據(jù)通信系統(tǒng)性能的兩個(gè)重要參數(shù),它們之間有著密切的關(guān)系,但并不完全相同。 波特率(Baud Rate): 波特率是指在數(shù)據(jù)
    的頭像 發(fā)表于 10-18 14:55 ?2320次閱讀

    uart波特率和傳輸頻率的關(guān)系 UART串口的常用波特率為多少

    UART(Universal Asynchronous Receiver/Transmitter)是一種廣泛使用的異步串行通信技術(shù),它允許兩臺(tái)設(shè)備之間進(jìn)行雙向數(shù)據(jù)傳輸。在UART通信中,波特率和傳輸
    的頭像 發(fā)表于 10-06 16:12 ?6416次閱讀
    uart<b class='flag-5'>波特率</b>和傳輸頻率的關(guān)系 UART串口的常用<b class='flag-5'>波特率</b>為多少

    串口通信中的波特率你真的了解嗎?差距竟如此重要!

    波特率在串口通信中的作用在串口通信中,波特率起著至關(guān)重要的作用。因?yàn)樵趥鬏敂?shù)據(jù)時(shí),發(fā)送方和接收方需要以相同的波特率進(jìn)行通信。如果兩端的波特率不同,那么就會(huì)出現(xiàn)數(shù)據(jù)丟失、傳輸錯(cuò)誤等問(wèn)題,
    的頭像 發(fā)表于 08-27 11:46 ?2789次閱讀
    串口通信中的<b class='flag-5'>波特率</b>你真的了解嗎?差距竟如此重要!

    關(guān)于比特波特率的定義與區(qū)別介紹

    比特波特率都是衡量數(shù)字通信中數(shù)據(jù)傳輸速率的重要參數(shù)。比特率直接表示了單位時(shí)間內(nèi)傳輸?shù)臄?shù)據(jù)量(以比特為單位),而波特率則表示了信號(hào)變化的速率(以符號(hào)為單位)。在實(shí)際應(yīng)用中,需要
    的頭像 發(fā)表于 08-05 14:31 ?997次閱讀

    如何更改波特率?

    我正在嘗試使用與此文檔相關(guān)的命令更改波特率:https://github.com/Arduinolibrary/DFRob ... _v0.23.pdf 這是固件版本:00200.9.4 當(dāng)我
    發(fā)表于 07-16 06:10

    485自動(dòng)收發(fā)電路的波特率是多少

    485自動(dòng)收發(fā)電路的波特率并不是一個(gè)固定的值,而是可以根據(jù)具體的應(yīng)用需求和電路設(shè)計(jì)進(jìn)行調(diào)整的。在實(shí)際應(yīng)用中,波特率的設(shè)置會(huì)受到多種因素的影響,包括傳輸距離、
    的頭像 發(fā)表于 07-13 09:41 ?4533次閱讀

    電子發(fā)燒友

    中國(guó)電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品