目前有兩大因素影響著車輛運輸和半導體技術的未來。行業(yè)正在擁抱令人振奮的新方法,即以清潔的電力驅動我們的汽車,同時重新設計支撐電動汽車(EV)子系統(tǒng)的半導體材料,以最大程度地提高功效比,進而增加電動汽車的行駛里程。
政府監(jiān)管機構繼續(xù)要求汽車OEM減少其車系的整體二氧化碳排放量,對違規(guī)行為給予嚴厲處罰,同時開始沿著道路和停車區(qū)域增設電動汽車充電基礎設施。但是,盡管取得了這些進展,主流消費者仍然對電動汽車的行駛里程存有疑慮,使電動汽車的推廣受到阻力。
更復雜的是,大尺寸的電動汽車電池雖然可以增加其行駛里程,緩解消費者關于行駛里程的焦慮,但它會令電動汽車的價格上漲——電池成本在整車成本中的占比超過25%。
幸運的是,同時期的半導體技術革命催生了新的寬帶隙器件,例如碳化硅(SiC) MOSFET功率開關,使得消費者對電動汽車行駛里程的期望與OEM在成本架構下實際可實現里程之間的差距得以縮小。
Wolfspeed SiC功率器件領導者之一,功率平臺經理Anuj Narain表示,“與現有的硅基技術相比,SiC MOSFET憑借其自身的優(yōu)勢,被廣泛認為可以為標準電動汽車的駕駛周期增加5%至10%的續(xù)航里程?!被诖耍鼈兪请妱悠噦鲃酉到y(tǒng)中新一代牽引逆變器的重要組成部分。如果與配套器件一起進行適當開發(fā),其能效提升將代表著消費者對電動汽車領域信心的大幅增加,并有助于加快電動汽車的普及。
充分利用SiC技術
眾所周知,基于SiC的功率開關本身在功率密度和效率方面具有優(yōu)勢,這對于系統(tǒng)散熱和減小器件尺寸都有重要意義。采用SiC有望使逆變器尺寸在800 V/250 kW時縮小3倍,如果配合使用直流環(huán)節(jié)薄膜電容,則能進一步減小尺寸和節(jié)省成本。與傳統(tǒng)的硅功率開關相比,SiC功率開關可以幫助實現更出色的行駛里程和/或更小的電池尺寸,使得開關成本在器件級別和系統(tǒng)級別都更具優(yōu)勢。
在同時考慮行駛里程和成本因素時,仍然需要以電機逆變器為焦點不斷創(chuàng)新,旨在進一步提高電動汽車的效率和行駛里程。作為電機逆變器中價格最昂貴、功能最重要的元件,SiC功率開關需要接受精準控制,以充分發(fā)揮額外的開關成本的價值。
事實上,SiC開關的所有固有優(yōu)勢都會被共模噪聲干擾,以及被管理不善的功率開關環(huán)境中的超快電壓和電流瞬變(dv/dt和di/dt)導致的極高和破壞性的電壓過沖影響。一般來說,拋開底層技術不談,SiC開關的功能相對簡單,它只是一個3端器件,但必須小心連接至系統(tǒng)。
關于柵極驅動器
隔離式柵極驅動器的作用關系到功率開關的最佳開關點,確保通過隔離柵實現短而準確的傳播延遲,同時提供系統(tǒng)和安全隔離,避免功率開關過熱,檢測和防止短路,并促使在ASIL D系統(tǒng)中插入子模塊驅動/開關功能。
但是,SiC開關導致的高擺率瞬態(tài)會破壞跨越隔離柵的數據傳輸,所以測量和了解對這些瞬變的敏感性至關重要。ADI專有的 iCoupler技術具有出色的共模瞬變抗擾度(CMTI),測量性能高達200 V/ns及以上。在安全操作環(huán)境中,這可以充分釋放SiC開關時間的潛力。
考慮到較小的裸片尺寸和嚴格的熱封裝,短路是基于SiC的電源開關的另一個主要挑戰(zhàn)。柵極驅動器為電動汽車傳動系統(tǒng)的可靠性、安全性和生命周期優(yōu)化提供了必要的短路保護。
在Wolfspeed等領先的SiC MOSFET功率開關提供商的實際測試中,高性能柵極驅動器已證實了自身的價值。對于關鍵參數性能,例如短路檢測時間和總故障清除時間,可分別低至300 ns和800 ns。為了提高安全性和保護等級,測試結果表明,可調的軟關斷能力對系統(tǒng)能否平穩(wěn)運行至關重要。
同樣,可以最大程度提高開關能量和電磁兼容性(EMC),以最大限度提高功率性能和電動汽車的行駛里程。驅動能力更高時,用戶可以獲得更快的邊緣速率,從而降低開關損耗。這不僅有助于提高效率,而且無需為每個柵極驅動器分配外部緩沖器,從而節(jié)省了電路板空間和成本。相反,在某些條件下,系統(tǒng)可能需要降低開關速度來實現出色的效率,甚至需要分級開關,研究表明以上可以進一步提高效率。ADI提供可調壓擺率,允許用戶進行此操作,去除外部緩沖器則進一步減少了阻礙。
系統(tǒng)要素
需要注意的是,柵極驅動器和SiC開關解決方案的綜合價值和性能可能完全被周圍組件的妥協和/或低效抵消。ADI在功率控制和傳感方面的經驗和我們系統(tǒng)級的性能優(yōu)化方法相結合,可以涵蓋多種設計考量。
從整體角度來看,電動汽車顯露了優(yōu)化傳動系統(tǒng)功率效率的額外機會,這對于在確保安全可靠運行的同時最大限度利用電池可用容量來說至關重要。電池管理系統(tǒng)的品質直接影響電動汽車每次充電所能行駛的里程數。優(yōu)質的電池管理系統(tǒng)能夠最大限度地延長電池的整體使用壽命,從而降低總擁有成本(TCO)。
就功率管理而言,能夠在不降低BOM成本或減小PCB尺寸的情況下克服復雜的電磁干擾問題(EMI)將變得至關重要。無論是隔離式柵極驅動器的供電電路,還是高壓至低壓DC-DC電路,高功效比、熱性能和封裝仍然是功率域的關鍵考慮因素。在所有情況下,能否消除電磁干擾對電動汽車設計人員而言極為重要。涉及到開關多個電源時,電磁干擾是一個非常關鍵的痛點,如果EMC性能出色,則非常有助于減少測試周期和降低設計復雜性,從而加快上市速度。
如果深入研究支持部件的生態(tài)系統(tǒng),會發(fā)現電磁傳感技術的進步推動產生了新一代無接觸電流傳感器,該傳感器能夠提供高帶寬、高精度,而且無功率損耗,此外,還推動產生了精密且可靠的位置傳感器,適用于軸端和軸外布置。典型的插電式混合動力電動汽車中部署15到30個電流傳感器,并采用旋轉和位置傳感器來監(jiān)測牽引電機。在干擾電磁場下的精度和可靠性是跨電動汽車功率系統(tǒng)測量和保持性能的重要屬性。
端到端效率
從電池到電機逆變器,再到支持組件等,從整體來看電動汽車傳動系統(tǒng)的所有元件,ADI發(fā)現了無數改進電動汽車的機會,可以提升其整體能效,還能增加電動汽車行駛里程。隨著SiC功率開關技術滲透到電動汽車電機逆變器中,數字隔離已成為其中一個重要的組成部分。
同樣,汽車OEM可以利用多學科方法來優(yōu)化電動汽車,以確保所有可用的功率檢測和控制器件密切配合,以最大限度提升性能和效率。同時,它們可以幫助消除主流消費者購買電動汽車的最后一個障礙,即行駛里程和成本,同時幫助打造更環(huán)保的未來。
責任編輯:haq
-
電動汽車
+關注
關注
156文章
12087瀏覽量
231286 -
驅動器
+關注
關注
52文章
8237瀏覽量
146384 -
功率器件
+關注
關注
41文章
1770瀏覽量
90444
原文標題:如何實現電動汽車行駛里程拓展的承諾?這項技術很關鍵!
文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論