CRC(循環(huán)冗余校驗)
CRC介紹
臨時“插播”,后面有實例。
CRC(Cyclic Redundancy Check,循環(huán)冗余校驗)是數(shù)據(jù)幀傳輸中常用的一種差錯控制編碼方式,針對要發(fā)送的數(shù)據(jù)幀,使用一些特定的多項式可以計算出CRC校驗結果,CRC校驗結果和原始數(shù)據(jù)一起傳輸?shù)浇邮斩恕?/p>
接收端在接收數(shù)據(jù)的同時按照相同的多項式對接收數(shù)據(jù)進行校驗運算,并將校驗結果和接收的結果進行對比,如果二二者相同則認為沒有發(fā)生傳輸錯誤;如果不同,則認為是發(fā)生了傳輸錯誤。
從理論上說,如果接收端計算出的CRC值與接收到的CRC值匹配,數(shù)據(jù)中仍有出錯的可能,但由于這種可能性極低,在實際應用中可以視為0,即沒有錯誤出現(xiàn)。
當接收端CRC不匹配時,接收端可以采取不同的措施,例如,丟棄數(shù)據(jù)包并通知對端,要求對端重新發(fā)送,或者只進行丟棄處理,通過高層協(xié)議實現(xiàn)數(shù)據(jù)的重傳。
串行CRC計算
計算CRC步驟如下:
選擇一個CRC算法或生成多項式,如CRC8-CCITT的生成多項式表示為(x^8+x^2+x+1);
CRC8硬件上由8個觸發(fā)器實現(xiàn),整合為一個移位寄存器,稱為CRC寄存器。
計算CRC之前,CRC寄存器初始化為一個已知的值,稱為CRC初始值;這里要求確定的初始值,因為接收端的CRC校驗電路需要使用和發(fā)送端相同的初始值;
CRC寄存器初始化之后,每個時鐘都有一個數(shù)據(jù)比特輸入,與當前寄存器的值共同參與計算;CRC校驗電路中,一些寄存器的輸入直接來自前級的輸出,有的是前級的輸出與當前輸入數(shù)據(jù)進行邏輯運算的結果;
在每個周期,新的數(shù)據(jù)不斷輸入,CRC寄存器不斷更新,直到最后一個輸入比特到達;
當最后一個數(shù)據(jù)比特到達時,CRC內(nèi)部所存儲的就是最后的CRC校驗結果;
正如上面提到的,CRC校驗結果的位寬取決于具體的CRC算法。例如,CRC5-USB中的CRC校驗結果為5比特,CRC8-CCITT中CCRC校驗結果為8比特;
在最后1個數(shù)據(jù)比特發(fā)出后,存儲在寄存器中的的CRC校驗結果逐比特依次輸出,直至最后一個比特。可以看岀,校驗結果緊跟在用戶數(shù)據(jù)后面輸出;
以下是CRC8-CCITT算法圖:
module CRC8_CCITT
(clk,reset,
din,
init_crc,
calc_crc,
crc_out);
input clk,reset;
input din;
input [7:0]init_crc;
input calc_crc;
output [7:0] crc_out;
parameter CRC_INIT_VALUE = 8‘hFF;
reg [7:0]crcreg,crcreg_nxt;
wire [7:0] newcrc;
wire [7:0] crc_out;
assign newcrc[0] = crcreg[7]^din;
assign newcrc[1] = (crcreg[7]^din)^crcreg[0];
assign newcrc[2] = (crcreg[7]^din)^crcreg[1];
assign newcrc[3] = crcreg[2];
assign newcrc[4] = crcreg[3];
assign newcrc[5] = crcreg[4];
assign newcrc[6] = crcreg[5];
assign newcrc[7] = crcreg[6];
always @(*)begin
if(init_crc)
crcreg_nxt = CRC_INIT_VALUE;
else if(calc_crc)
crcreg_nxt = newcrc;
else
crcreg_nxt = crcreg;
end
always @(posedge clk or negedge reset)begin
if(!reset)
crcreg = CRC_INIT_VALUE;
else
crcreg = crcreg_nxt;
end
assign crc_out = crcreg;
endmodule
測試testbench
`timescale 1ns/1ns
module testbench_CRC8_CCITT;
reg clk_tb,reset_tb;
reg din_tb;
reg init_crc_tb,calc_crc_tb;
wire [7:0] crc_out_tb;
parameter CLK_HALF_PERIOD = 5;
parameter RST_DEASSERT_DLY = 100;
initial begin
clk_tb = 1’b0;
forever begin
#CLK_HALF_PERIOD clk_tb = ~clk_tb;
end
end
initial begin
reset_tb = 1‘b0;
#RST_DEASSERT_DLY reset_tb = 1’b1;
end
initial begin
din_tb = 0;
#RST_DEASSERT_DLY;
#1 din_tb = 1;
@(posedge clk_tb);
#1 din_tb = 0;
@(posedge clk_tb);
#1 din_tb = 0;
@(posedge clk_tb);
#1 din_tb = 1;
@(posedge clk_tb);
#1 din_tb = 1;
@(posedge clk_tb);
#1 din_tb = 0;
@(posedge clk_tb);
#1 din_tb = 1;
@(posedge clk_tb);
#1 din_tb = 1;
@(posedge clk_tb);
#1 din_tb = 0;
end
initial begin
init_crc_tb = 0;
calc_crc_tb = 1;
end
CRC8_CCITT test_CRC8_CCITT
(.clk(clk_tb),.reset(reset_tb),
.din(din_tb),
.init_crc(init_crc_tb),
.calc_crc(calc_crc_tb),
.crc_out(crc_out_tb)
);
endmodule
并行CRC計算
在前一部分,我們討論了單比特輸人數(shù)據(jù)的CRC計算方法。然而,在實際應用中,數(shù)據(jù)路徑寬度通常為多比特的,并且每個時鐘周期并行數(shù)據(jù)邡會改變。
例如,對于32位寬的并行數(shù)據(jù),我們可以通過遞歸方法推導出32比特之后CRC寄存器的值。推導出來的每個32位并行CRC寄存器的輸入值是當前輸入datain[31:0]當前CRC寄存器的值crcreg組成的函數(shù)。
這一遞歸推導過程可以在理論上進行,但十分煩瑣。Easics公司已經(jīng)開發(fā)了網(wǎng)頁版的工具(http://www.easics.com)/(https://www.easics.com/crctool/),設計者可以根據(jù)需要得到所需的計算公式。
部分數(shù)據(jù)CRC計算
我們討論了串行數(shù)據(jù)的CRC計算,又討論了使用遞歸方法計算并行數(shù)據(jù)的CRC在并行CRC計算時,如果最后一個輸入數(shù)據(jù)中只有部分字節(jié)是有效的,那么應該怎么辦呢?本部分將進行討論。
以每個時鐘周期到達8字節(jié)的PCle x8為例,在最后一個周期,有兩種可能的情況,一種是所有8字節(jié)都是有效的,另一種是只有4字節(jié)32比特)是有效的。不攜帶有效數(shù)據(jù)的4字節(jié)由專用符號進行填充,稱為PAD,PAD不參與CRC計算。
這意味著在前期每個時鐘周期需要處理64比特數(shù)據(jù),且需要在一個時鐘周期內(nèi)計算其CRC值。在最后一個周期中,CRC計算涉及所有8字節(jié)或只有4字節(jié)。此時,可以通過兩種方式進行處理:
第一種方式是在一個計算CRC校驗值的流水線中使用兩個CRC校驗計算電路,一個對64位數(shù)據(jù)進行計算,一個對32位數(shù)據(jù)進行計算,二者結合起來計算最后的CRC結果;第二種方式中只用一組CRC寄存器,但是,對于最后輸入的并行數(shù)據(jù),使用兩個不同的電路計算CRC內(nèi)部寄存器的輸入值。這兩種方式將在后面分別介紹。
流水線方式
這種機制需要兩個CRC校驗計算電路,一個用于每次計算64比特的CRC值,一個用于每次計算32比特的CRC值。
下面是具體內(nèi)容:
使用一個64比特CRC計算電路和一個32比特CRC計算電路;
64比特CRC計算電路用于計算64位數(shù)據(jù)的CRC值;
對于最后一個并行數(shù)據(jù),如果所有的8字節(jié)都是有效字節(jié),則CRC校驗結果由64比特CRC計算電路計算得到(32位的CRC計算電路在此次計算中沒有起作用);
如果最后一個數(shù)據(jù)中只有4字節(jié)是有效的,最終的CRC校驗結果由32比特CRC計算電路計算得到;
在倒數(shù)第二個并行數(shù)據(jù)輸入64比特CRC計算電路之后,64比特CRC計算電路中每個寄存器的輸入值(注意,不是寄存器的輸出值)被傳遞給32比特CRC計算電路,這樣,當最后一組并行數(shù)據(jù)到達時,32位CRC計算電路的寄存器中存儲的是來自于64位計算電路中前期計算的結果,該結果與當前數(shù)據(jù)一起進行32位并行計算,得到最終的校驗結果。
僅使用一組CRC寄存器
在這種電路結構中,只使用一組CRC寄存器。
下面是其相關細節(jié):
電路中有兩個異或邏輯模塊,第一個的輸入是基于當前寄存器的值和64比特輸入數(shù)據(jù),第二個的輸入是當前寄存器的值和32比特輸入數(shù)據(jù);
對于前面的數(shù)據(jù),每個時鐘周期內(nèi)CRC計算電路使用64比特異或邏輯模塊的輸出結果;
對于最后一組數(shù)據(jù),如果所有的8字節(jié)都有效,則使用64比特異或邏輯模塊的計算結果作為最后一個時鐘周期CRC寄存器的輸入;如果只有4字節(jié)有效,則使用32比特異或邏輯模塊的輸出結果作為最后一個時鐘周期CRC寄存器的輸入。
從定時特性上看,使用流水線結構的并行CRC校驗電路可以達到更高的速度,但它需要兩組CRC寄存器。第二種方式僅需要一組CRC寄存器,但是其組合邏輯部分更為復雜,路徑延遲更大,從而不利于提高處理速度。
下面是每個時鐘周期計算64比特并行數(shù)據(jù)CRC校驗結果的RTL代碼,由Easics網(wǎng)站上的Web工具具計算得到。我們還可以生成32比特或者所需要的任何其他位寬的CRC并行計算電路。
// Copyright 2008 Altera Corporation. All rights reserved.
// Altera products are protected under numerous U.S. and foreign patents,
// maskwork rights, copyrights and other intellectual property laws.
//
// This reference design file, and your use thereof, is subject to and governed
// by the terms and conditions of the applicable Altera Reference Design
// License Agreement (either as signed by you or found at www.altera.com)。 By
// using this reference design file, you indicate your acceptance of such terms
// and conditions between you and Altera Corporation. In the event that you do
// not agree with such terms and conditions, you may not use the reference
// design file and please promptly destroy any copies you have made.
//
// This reference design file is being provided on an “as-is” basis and as an
// accommodation and therefore all warranties, representations or guarantees of
// any kind (whether express, implied or statutory) including, without
// limitation, warranties of merchantability, non-infringement, or fitness for
// a particular purpose, are specifically disclaimed. By making this reference
// design file available, Altera expressly does not recommend, suggest or
// require that this reference design file be used in combination with any
// other product not provided by Altera.
/////////////////////////////////////////////////////////////////////////////
//
// 24 bit CRC of 64 data bits (reversed - MSB first)
// polynomial : 00328b63
// x^21 + x^20 + x^17 + x^15 + x^11 + x^9 + x^8 + x^6 + x^5 + x^1 + x^0
//
// CCCCCCCCCCCCCCCCCCCCCCCC DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
// 000000000011111111112222 0000000000111111111122222222223333333333444444444455555555556666
// 012345678901234567890123 0123456789012345678901234567890123456789012345678901234567890123
// C00 = .#.。。.#.##..##..#.###.## #..##.###.##..#.#.。。。。.#.。。。.####.#.####.#.。。.#.##..##..#.###.##
// C01 = ###.。.###.#.#.#.###..##. ##.#.##..##.#.####.。。。.##.。。.#.。.####.。.###.。.###.#.#.#.###..##.
// C02 = .###.。.###.#.#.#.###..## .##.#.##..##.#.####.。。。.##.。。.#.。.####.。.###.。.###.#.#.#.###..##
// C03 = 。.###.。.###.#.#.#.###..# 。.##.#.##..##.#.####.。。。.##.。。.#.。.####.。.###.。.###.#.#.#.###..#
// C04 = 。。.###.。.###.#.#.#.###.。 。。.##.#.##..##.#.####.。。。.##.。。.#.。.####.。.###.。.###.#.#.#.###.。
// C05 = ##..##..####.##.。。.#.#.# #..#.##.##.#.#.。。.####.#.。.########.#.。.##..##..####.##.。。.#.#.#
// C06 = 。.#..#..#.##.####.##.。.# ##.#.。。.##.##.。.#..######.。.#.。。.#.##.##..#..#..#.##.####.##.。.#
// C07 = #..#..#..#.##.####.##.。。 .##.#.。。.##.##.。.#..######.。.#.。。.#.##.##..#..#..#.##.####.##.。。
// C08 = #.。.#.#####.。。.#.#.#.### #.#.#####.。。.#..#.#..##.###..#.##.###..##.。.#.#####.。。.#.#.#.###
// C09 = #.。。.###..####.。。。.#.。。。 ##..##.。.###.。。.##.#..#..###.#.#.###..###.。。.###..####.。。。.#.。。。
// C10 = ##.。。.###..####.。。。.#.。。 .##..##.。.###.。。.##.#..#..###.#.#.###..###.。。.###..####.。。。.#.。。
// C11 = #.#.。.##.。。。。.###.###### #.#.#.。.#.#.###.#.##.#.##..##.#.####..###.#.。.##.。。。。.###.######
// C12 = ##.#.。.##.。。。。.###.##### .#.#.#.。.#.#.###.#.##.#.##..##.#.####..###.#.。.##.。。。。.###.#####
// C13 = ###.#.。.##.。。。。.###.#### 。.#.#.#.。.#.#.###.#.##.#.##..##.#.####..###.#.。.##.。。。。.###.####
// C14 = .###.#.。.##.。。。。.###.### 。。.#.#.#.。.#.#.###.#.##.#.##..##.#.####..###.#.。.##.。。。。.###.###
// C15 = .####.。.######..#.。。。。。。 #..#.。.#..###.。。.##.#.#..#.####.。。。。。。。。.####.。.######..#.。。。。。。
// C16 = 。.####.。.######..#.。。。。。 .#..#.。.#..###.。。.##.#.#..#.####.。。。。。。。。.####.。.######..#.。。。。。
// C17 = .#.###..####..###..##.## #.############..#..##.###..#.。。。。.#.####.#.###..####..###..##.##
// C18 = #.#.###..####..###..##.# .#.############..#..##.###..#.。。。。.#.####.#.###..####..###..##.#
// C19 = ##.#.###..####..###..##. 。.#.############..#..##.###..#.。。。。.#.####.#.###..####..###..##.
// C20 = #.#.#..#.#.#..#.##..#.。。 #.。.##.。.#..##.#.。.#..#..###.#.##.#.#.#.#.#.#..#.#.#..#.##..#.。。
// C21 = 。。.#.##..##..#.###.##### ##.###.##..#.#.。。。。.#.。。。.####.#.####.#.。。.#.##..##..#.###.#####
// C22 = 。。。.#.##..##..#.###.#### .##.###.##..#.#.。。。。.#.。。。.####.#.####.#.。。.#.##..##..#.###.####
// C23 = #.。。.#.##..##..#.###.### 。.##.###.##..#.#.。。。。.#.。。。.####.#.####.#.。。.#.##..##..#.###.###
//
// Number of XORs used is 24
// Total XOR inputs 1090
module crc24_dat64 (
input[23:0] crc_in,
input[63:0] dat_in,
output[23:0] crc_out
);
parameter METHOD = 1;
generate
if (METHOD == 0)
crc24_dat64_flat cc (.c(crc_in),.d(dat_in),.crc_out(crc_out));
else
crc24_dat64_factor cc (.c(crc_in),.d(dat_in),.crc_out(crc_out));
endgenerate
endmodule
module crc24_dat64_flat (c,d,crc_out);
input[23:0] c;
input[63:0] d;
output[23:0] crc_out;
wire[23:0] crc_out;
assign crc_out[0] =
c[1] ^ c[6] ^ c[8] ^ c[9] ^ c[12] ^ c[13] ^
c[16] ^ c[18] ^ c[19] ^ c[20] ^ c[22] ^ c[23] ^ d[63] ^
d[62] ^ d[60] ^ d[59] ^ d[58] ^ d[56] ^ d[53] ^ d[52] ^
d[49] ^ d[48] ^ d[46] ^ d[41] ^ d[39] ^ d[38] ^ d[37] ^
d[36] ^ d[34] ^ d[32] ^ d[31] ^ d[30] ^ d[29] ^ d[23] ^
d[16] ^ d[14] ^ d[11] ^ d[10] ^ d[8] ^ d[7] ^ d[6] ^
d[4] ^ d[3] ^ d[0];
assign crc_out[1] =
c[0] ^ c[1] ^ c[2] ^ c[6] ^ c[7] ^ c[8] ^
c[10] ^ c[12] ^ c[14] ^ c[16] ^ c[17] ^ c[18] ^ c[21] ^
c[22] ^ d[62] ^ d[61] ^ d[58] ^ d[57] ^ d[56] ^ d[54] ^
d[52] ^ d[50] ^ d[48] ^ d[47] ^ d[46] ^ d[42] ^ d[41] ^
d[40] ^ d[36] ^ d[35] ^ d[34] ^ d[33] ^ d[29] ^ d[24] ^
d[23] ^ d[17] ^ d[16] ^ d[15] ^ d[14] ^ d[12] ^ d[10] ^
d[9] ^ d[6] ^ d[5] ^ d[3] ^ d[1] ^ d[0];
assign crc_out[2] =
c[1] ^ c[2] ^ c[3] ^ c[7] ^ c[8] ^ c[9] ^
c[11] ^ c[13] ^ c[15] ^ c[17] ^ c[18] ^ c[19] ^ c[22] ^
c[23] ^ d[63] ^ d[62] ^ d[59] ^ d[58] ^ d[57] ^ d[55] ^
d[53] ^ d[51] ^ d[49] ^ d[48] ^ d[47] ^ d[43] ^ d[42] ^
d[41] ^ d[37] ^ d[36] ^ d[35] ^ d[34] ^ d[30] ^ d[25] ^
d[24] ^ d[18] ^ d[17] ^ d[16] ^ d[15] ^ d[13] ^ d[11] ^
d[10] ^ d[7] ^ d[6] ^ d[4] ^ d[2] ^ d[1];
assign crc_out[3] =
c[2] ^ c[3] ^ c[4] ^ c[8] ^ c[9] ^ c[10] ^
c[12] ^ c[14] ^ c[16] ^ c[18] ^ c[19] ^ c[20] ^ c[23] ^
d[63] ^ d[60] ^ d[59] ^ d[58] ^ d[56] ^ d[54] ^ d[52] ^
d[50] ^ d[49] ^ d[48] ^ d[44] ^ d[43] ^ d[42] ^ d[38] ^
d[37] ^ d[36] ^ d[35] ^ d[31] ^ d[26] ^ d[25] ^ d[19] ^
d[18] ^ d[17] ^ d[16] ^ d[14] ^ d[12] ^ d[11] ^ d[8] ^
d[7] ^ d[5] ^ d[3] ^ d[2];
assign crc_out[4] =
c[3] ^ c[4] ^ c[5] ^ c[9] ^ c[10] ^ c[11] ^
c[13] ^ c[15] ^ c[17] ^ c[19] ^ c[20] ^ c[21] ^ d[61] ^
d[60] ^ d[59] ^ d[57] ^ d[55] ^ d[53] ^ d[51] ^ d[50] ^
d[49] ^ d[45] ^ d[44] ^ d[43] ^ d[39] ^ d[38] ^ d[37] ^
d[36] ^ d[32] ^ d[27] ^ d[26] ^ d[20] ^ d[19] ^ d[18] ^
d[17] ^ d[15] ^ d[13] ^ d[12] ^ d[9] ^ d[8] ^ d[6] ^
d[4] ^ d[3];
assign crc_out[5] =
c[0] ^ c[1] ^ c[4] ^ c[5] ^ c[8] ^ c[9] ^
c[10] ^ c[11] ^ c[13] ^ c[14] ^ c[19] ^ c[21] ^ c[23] ^
d[63] ^ d[61] ^ d[59] ^ d[54] ^ d[53] ^ d[51] ^ d[50] ^
d[49] ^ d[48] ^ d[45] ^ d[44] ^ d[41] ^ d[40] ^ d[36] ^
d[34] ^ d[33] ^ d[32] ^ d[31] ^ d[30] ^ d[29] ^ d[28] ^
d[27] ^ d[23] ^ d[21] ^ d[20] ^ d[19] ^ d[18] ^ d[13] ^
d[11] ^ d[9] ^ d[8] ^ d[6] ^ d[5] ^ d[3] ^ d[0];
assign crc_out[6] =
c[2] ^ c[5] ^ c[8] ^ c[10] ^ c[11] ^ c[13] ^
c[14] ^ c[15] ^ c[16] ^ c[18] ^ c[19] ^ c[23] ^ d[63] ^
d[59] ^ d[58] ^ d[56] ^ d[55] ^ d[54] ^ d[53] ^ d[51] ^
d[50] ^ d[48] ^ d[45] ^ d[42] ^ d[39] ^ d[38] ^ d[36] ^
d[35] ^ d[33] ^ d[28] ^ d[24] ^ d[23] ^ d[22] ^ d[21] ^
d[20] ^ d[19] ^ d[16] ^ d[12] ^ d[11] ^ d[9] ^ d[8] ^
d[3] ^ d[1] ^ d[0];
assign crc_out[7] =
c[0] ^ c[3] ^ c[6] ^ c[9] ^ c[11] ^ c[12] ^
c[14] ^ c[15] ^ c[16] ^ c[17] ^ c[19] ^ c[20] ^ d[60] ^
d[59] ^ d[57] ^ d[56] ^ d[55] ^ d[54] ^ d[52] ^ d[51] ^
d[49] ^ d[46] ^ d[43] ^ d[40] ^ d[39] ^ d[37] ^ d[36] ^
d[34] ^ d[29] ^ d[25] ^ d[24] ^ d[23] ^ d[22] ^ d[21] ^
d[20] ^ d[17] ^ d[13] ^ d[12] ^ d[10] ^ d[9] ^ d[4] ^
d[2] ^ d[1];
assign crc_out[8] =
c[0] ^ c[4] ^ c[6] ^ c[7] ^ c[8] ^ c[9] ^
c[10] ^ c[15] ^ c[17] ^ c[19] ^ c[21] ^ c[22] ^ c[23] ^
d[63] ^ d[62] ^ d[61] ^ d[59] ^ d[57] ^ d[55] ^ d[50] ^
d[49] ^ d[48] ^ d[47] ^ d[46] ^ d[44] ^ d[40] ^ d[39] ^
d[36] ^ d[35] ^ d[34] ^ d[32] ^ d[31] ^ d[29] ^ d[26] ^
d[25] ^ d[24] ^ d[22] ^ d[21] ^ d[18] ^ d[16] ^ d[13] ^
d[8] ^ d[7] ^ d[6] ^ d[5] ^ d[4] ^ d[2] ^ d[0];
assign crc_out[9] =
c[0] ^ c[5] ^ c[6] ^ c[7] ^ c[10] ^ c[11] ^
c[12] ^ c[13] ^ c[19] ^ d[59] ^ d[53] ^ d[52] ^ d[51] ^
d[50] ^ d[47] ^ d[46] ^ d[45] ^ d[40] ^ d[39] ^ d[38] ^
d[35] ^ d[34] ^ d[33] ^ d[31] ^ d[29] ^ d[27] ^ d[26] ^
d[25] ^ d[22] ^ d[19] ^ d[17] ^ d[16] ^ d[11] ^ d[10] ^
d[9] ^ d[5] ^ d[4] ^ d[1] ^ d[0];
assign crc_out[10] =
c[0] ^ c[1] ^ c[6] ^ c[7] ^ c[8] ^ c[11] ^
c[12] ^ c[13] ^ c[14] ^ c[20] ^ d[60] ^ d[54] ^ d[53] ^
d[52] ^ d[51] ^ d[48] ^ d[47] ^ d[46] ^ d[41] ^ d[40] ^
d[39] ^ d[36] ^ d[35] ^ d[34] ^ d[32] ^ d[30] ^ d[28] ^
d[27] ^ d[26] ^ d[23] ^ d[20] ^ d[18] ^ d[17] ^ d[12] ^
d[11] ^ d[10] ^ d[6] ^ d[5] ^ d[2] ^ d[1];
assign crc_out[11] =
c[0] ^ c[2] ^ c[6] ^ c[7] ^ c[14] ^ c[15] ^
c[16] ^ c[18] ^ c[19] ^ c[20] ^ c[21] ^ c[22] ^ c[23] ^
d[63] ^ d[62] ^ d[61] ^ d[60] ^ d[59] ^ d[58] ^ d[56] ^
d[55] ^ d[54] ^ d[47] ^ d[46] ^ d[42] ^ d[40] ^ d[39] ^
d[38] ^ d[35] ^ d[34] ^ d[33] ^ d[32] ^ d[30] ^ d[28] ^
d[27] ^ d[24] ^ d[23] ^ d[21] ^ d[19] ^ d[18] ^ d[16] ^
d[14] ^ d[13] ^ d[12] ^ d[10] ^ d[8] ^ d[4] ^ d[2] ^
d[0];
assign crc_out[12] =
c[0] ^ c[1] ^ c[3] ^ c[7] ^ c[8] ^ c[15] ^
c[16] ^ c[17] ^ c[19] ^ c[20] ^ c[21] ^ c[22] ^ c[23] ^
d[63] ^ d[62] ^ d[61] ^ d[60] ^ d[59] ^ d[57] ^ d[56] ^
d[55] ^ d[48] ^ d[47] ^ d[43] ^ d[41] ^ d[40] ^ d[39] ^
d[36] ^ d[35] ^ d[34] ^ d[33] ^ d[31] ^ d[29] ^ d[28] ^
d[25] ^ d[24] ^ d[22] ^ d[20] ^ d[19] ^ d[17] ^ d[15] ^
d[14] ^ d[13] ^ d[11] ^ d[9] ^ d[5] ^ d[3] ^ d[1];
assign crc_out[13] =
c[0] ^ c[1] ^ c[2] ^ c[4] ^ c[8] ^ c[9] ^
c[16] ^ c[17] ^ c[18] ^ c[20] ^ c[21] ^ c[22] ^ c[23] ^
d[63] ^ d[62] ^ d[61] ^ d[60] ^ d[58] ^ d[57] ^ d[56] ^
d[49] ^ d[48] ^ d[44] ^ d[42] ^ d[41] ^ d[40] ^ d[37] ^
d[36] ^ d[35] ^ d[34] ^ d[32] ^ d[30] ^ d[29] ^ d[26] ^
d[25] ^ d[23] ^ d[21] ^ d[20] ^ d[18] ^ d[16] ^ d[15] ^
d[14] ^ d[12] ^ d[10] ^ d[6] ^ d[4] ^ d[2];
assign crc_out[14] =
c[1] ^ c[2] ^ c[3] ^ c[5] ^ c[9] ^ c[10] ^
c[17] ^ c[18] ^ c[19] ^ c[21] ^ c[22] ^ c[23] ^ d[63] ^
d[62] ^ d[61] ^ d[59] ^ d[58] ^ d[57] ^ d[50] ^ d[49] ^
d[45] ^ d[43] ^ d[42] ^ d[41] ^ d[38] ^ d[37] ^ d[36] ^
d[35] ^ d[33] ^ d[31] ^ d[30] ^ d[27] ^ d[26] ^ d[24] ^
d[22] ^ d[21] ^ d[19] ^ d[17] ^ d[16] ^ d[15] ^ d[13] ^
d[11] ^ d[7] ^ d[5] ^ d[3];
assign crc_out[15] =
c[1] ^ c[2] ^ c[3] ^ c[4] ^ c[8] ^ c[9] ^
c[10] ^ c[11] ^ c[12] ^ c[13] ^ c[16] ^ d[56] ^ d[53] ^
d[52] ^ d[51] ^ d[50] ^ d[49] ^ d[48] ^ d[44] ^ d[43] ^
d[42] ^ d[41] ^ d[30] ^ d[29] ^ d[28] ^ d[27] ^ d[25] ^
d[22] ^ d[20] ^ d[18] ^ d[17] ^ d[12] ^ d[11] ^ d[10] ^
d[7] ^ d[3] ^ d[0];
assign crc_out[16] =
c[2] ^ c[3] ^ c[4] ^ c[5] ^ c[9] ^ c[10] ^
c[11] ^ c[12] ^ c[13] ^ c[14] ^ c[17] ^ d[57] ^ d[54] ^
d[53] ^ d[52] ^ d[51] ^ d[50] ^ d[49] ^ d[45] ^ d[44] ^
d[43] ^ d[42] ^ d[31] ^ d[30] ^ d[29] ^ d[28] ^ d[26] ^
d[23] ^ d[21] ^ d[19] ^ d[18] ^ d[13] ^ d[12] ^ d[11] ^
d[8] ^ d[4] ^ d[1];
assign crc_out[17] =
c[1] ^ c[3] ^ c[4] ^ c[5] ^ c[8] ^ c[9] ^
c[10] ^ c[11] ^ c[14] ^ c[15] ^ c[16] ^ c[19] ^ c[20] ^
c[22] ^ c[23] ^ d[63] ^ d[62] ^ d[60] ^ d[59] ^ d[56] ^
d[55] ^ d[54] ^ d[51] ^ d[50] ^ d[49] ^ d[48] ^ d[45] ^
d[44] ^ d[43] ^ d[41] ^ d[39] ^ d[38] ^ d[37] ^ d[36] ^
d[34] ^ d[27] ^ d[24] ^ d[23] ^ d[22] ^ d[20] ^ d[19] ^
d[16] ^ d[13] ^ d[12] ^ d[11] ^ d[10] ^ d[9] ^ d[8] ^
d[7] ^ d[6] ^ d[5] ^ d[4] ^ d[3] ^ d[2] ^ d[0];
assign crc_out[18] =
c[0] ^ c[2] ^ c[4] ^ c[5] ^ c[6] ^ c[9] ^
c[10] ^ c[11] ^ c[12] ^ c[15] ^ c[16] ^ c[17] ^ c[20] ^
c[21] ^ c[23] ^ d[63] ^ d[61] ^ d[60] ^ d[57] ^ d[56] ^
d[55] ^ d[52] ^ d[51] ^ d[50] ^ d[49] ^ d[46] ^ d[45] ^
d[44] ^ d[42] ^ d[40] ^ d[39] ^ d[38] ^ d[37] ^ d[35] ^
d[28] ^ d[25] ^ d[24] ^ d[23] ^ d[21] ^ d[20] ^ d[17] ^
d[14] ^ d[13] ^ d[12] ^ d[11] ^ d[10] ^ d[9] ^ d[8] ^
d[7] ^ d[6] ^ d[5] ^ d[4] ^ d[3] ^ d[1];
assign crc_out[19] =
c[0] ^ c[1] ^ c[3] ^ c[5] ^ c[6] ^ c[7] ^
c[10] ^ c[11] ^ c[12] ^ c[13] ^ c[16] ^ c[17] ^ c[18] ^
c[21] ^ c[22] ^ d[62] ^ d[61] ^ d[58] ^ d[57] ^ d[56] ^
d[53] ^ d[52] ^ d[51] ^ d[50] ^ d[47] ^ d[46] ^ d[45] ^
d[43] ^ d[41] ^ d[40] ^ d[39] ^ d[38] ^ d[36] ^ d[29] ^
d[26] ^ d[25] ^ d[24] ^ d[22] ^ d[21] ^ d[18] ^ d[15] ^
d[14] ^ d[13] ^ d[12] ^ d[11] ^ d[10] ^ d[9] ^ d[8] ^
d[7] ^ d[6] ^ d[5] ^ d[4] ^ d[2];
assign crc_out[20] =
c[0] ^ c[2] ^ c[4] ^ c[7] ^ c[9] ^ c[11] ^
c[14] ^ c[16] ^ c[17] ^ c[20] ^ d[60] ^ d[57] ^ d[56] ^
d[54] ^ d[51] ^ d[49] ^ d[47] ^ d[44] ^ d[42] ^ d[40] ^
d[38] ^ d[36] ^ d[34] ^ d[32] ^ d[31] ^ d[29] ^ d[27] ^
d[26] ^ d[25] ^ d[22] ^ d[19] ^ d[15] ^ d[13] ^ d[12] ^
d[9] ^ d[5] ^ d[4] ^ d[0];
assign crc_out[21] =
c[3] ^ c[5] ^ c[6] ^ c[9] ^ c[10] ^ c[13] ^
c[15] ^ c[16] ^ c[17] ^ c[19] ^ c[20] ^ c[21] ^ c[22] ^
c[23] ^ d[63] ^ d[62] ^ d[61] ^ d[60] ^ d[59] ^ d[57] ^
d[56] ^ d[55] ^ d[53] ^ d[50] ^ d[49] ^ d[46] ^ d[45] ^
d[43] ^ d[38] ^ d[36] ^ d[35] ^ d[34] ^ d[33] ^ d[31] ^
d[29] ^ d[28] ^ d[27] ^ d[26] ^ d[20] ^ d[13] ^ d[11] ^
d[8] ^ d[7] ^ d[5] ^ d[4] ^ d[3] ^ d[1] ^ d[0];
assign crc_out[22] =
c[4] ^ c[6] ^ c[7] ^ c[10] ^ c[11] ^ c[14] ^
c[16] ^ c[17] ^ c[18] ^ c[20] ^ c[21] ^ c[22] ^ c[23] ^
d[63] ^ d[62] ^ d[61] ^ d[60] ^ d[58] ^ d[57] ^ d[56] ^
d[54] ^ d[51] ^ d[50] ^ d[47] ^ d[46] ^ d[44] ^ d[39] ^
d[37] ^ d[36] ^ d[35] ^ d[34] ^ d[32] ^ d[30] ^ d[29] ^
d[28] ^ d[27] ^ d[21] ^ d[14] ^ d[12] ^ d[9] ^ d[8] ^
d[6] ^ d[5] ^ d[4] ^ d[2] ^ d[1];
assign crc_out[23] =
c[0] ^ c[5] ^ c[7] ^ c[8] ^ c[11] ^ c[12] ^
c[15] ^ c[17] ^ c[18] ^ c[19] ^ c[21] ^ c[22] ^ c[23] ^
d[63] ^ d[62] ^ d[61] ^ d[59] ^ d[58] ^ d[57] ^ d[55] ^
d[52] ^ d[51] ^ d[48] ^ d[47] ^ d[45] ^ d[40] ^ d[38] ^
d[37] ^ d[36] ^ d[35] ^ d[33] ^ d[31] ^ d[30] ^ d[29] ^
d[28] ^ d[22] ^ d[15] ^ d[13] ^ d[10] ^ d[9] ^ d[7] ^
d[6] ^ d[5] ^ d[3] ^ d[2];
endmodule
module crc24_dat64_factor (c,d,crc_out);
input[23:0] c;
input[63:0] d;
output[23:0] crc_out;
wire[23:0] crc_out;
wire[114:0] h ;
xor6 cx_0 (crc_out[0], h[51] , h[60] , h[66] , h[73] , h[80] , h[93]);
xor6 cx_1 (crc_out[1], h[16] , h[37] , h[44] , h[61] , h[104] , h[114]);
xor6 cx_2 (crc_out[2], h[35] , h[36] , h[44] , h[57] , h[112] , h[113]);
xor6 cx_3 (crc_out[3], h[32] , h[35] , h[37] , h[40] , h[41] , h[111]);
xor6 cx_4 (crc_out[4], h[44] , h[46] , h[59] , h[65] , h[109] , h[110]);
xor6 cx_5 (crc_out[5], h[45] , h[46] , h[63] , h[64] , h[107] , h[108]);
xor6 cx_6 (crc_out[6], h[24] , h[34] , h[65] , h[67] , h[105] , h[106]);
xor6 cx_7 (crc_out[7], h[40] , h[49] , h[58] , h[67] , h[102] , h[103]);
xor6 cx_8 (crc_out[8], h[35] , h[39] , h[63] , h[66] , h[100] , h[101]);
xor6 cx_9 (crc_out[9], h[27] , h[45] , h[61] , h[66] , h[98] , h[99]);
xor6 cx_10 (crc_out[10], h[33] , h[44] , h[48] , h[95] , h[96] , h[97]);
xor6 cx_11 (crc_out[11], h[22] , h[33] , h[36] , h[49] , h[59] , h[94]);
xor6 cx_12 (crc_out[12], h[12] , h[44] , h[62] , h[90] , h[91] , h[92]);
xor6 cx_13 (crc_out[13], h[35] , h[38] , h[50] , h[64] , h[88] , h[89]);
xor6 cx_14 (crc_out[14], h[34] , h[50] , h[56] , h[62] , h[86] , h[87]);
xor6 cx_15 (crc_out[15], h[19] , h[38] , h[48] , h[55] , h[84] , h[85]);
xor6 cx_16 (crc_out[16], h[30] , h[38] , h[42] , h[54] , h[62] , h[83]);
xor6 cx_17 (crc_out[17], h[25] , h[31] , h[54] , h[66] , h[81] , h[82]);
xor6 cx_18 (crc_out[18], h[41] , h[55] , h[60] , h[63] , h[78] , h[79]);
xor6 cx_19 (crc_out[19], h[21] , h[28] , h[74] , h[75] , h[76] , h[77]);
xor6 cx_20 (crc_out[20], h[42] , h[45] , h[51] , h[57] , h[71] , h[72]);
xor6 cx_21 (crc_out[21], h[29] , h[56] , h[67] , h[68] , h[69] , h[70]);
xor6 cx_22 (crc_out[22], h[31] , h[37] , h[39] , h[52] , h[53] , h[58]);
xor6 cx_23 (crc_out[23], h[19] , h[23] , h[43] , h[47] , h[63] , h[73]);
xor6 hx_0 (h[0], c[19] , c[23] , d[63] , d[59] , d[36] , d[13]); // used by 8
xor6 hx_1 (h[1], c[16] , c[20] , d[60] , d[56] , d[36] , d[12]); // used by 5
xor6 hx_2 (h[2], c[17] , c[21] , d[61] , d[57] , d[35] , d[5]); // used by 8
xor6 hx_3 (h[3], c[9] , c[17] , d[57] , d[49] , d[37] , d[4]); // used by 4
xor6 hx_4 (h[4], c[9] , c[10] , d[50] , d[49] , d[11] , d[7]); // used by 4
xor6 hx_5 (h[5], c[5] , c[10] , c[11] , d[51] , d[50] , d[45]); // used by 8
xor6 hx_6 (h[6], c[0] , c[7] , d[47] , d[40] , d[34] , d[10]); // used by 4
xor6 hx_7 (h[7], c[6] , d[46] , d[39] , d[34] , d[8] , d[4]); // used by 3
xor6 hx_8 (h[8], c[18] , c[22] , d[62] , d[58] , d[16] , d[2]); // used by 3
xor6 hx_9 (h[9], c[0] , d[40] , d[29] , d[25] , d[22] , d[9]); // used by 4
xor6 hx_10 (h[10], c[12] , c[13] , d[53] , d[52] , d[29] , d[11]); // used by 3
xor6 hx_11 (h[11], c[1] , c[16] , c[22] , d[62] , d[56] , d[41]); // used by 5
xor6 hx_12 (h[12], c[15] , c[20] , d[60] , d[55] , d[39] , d[20]); // used by 4
xor6 hx_13 (h[13], c[8] , c[14] , d[54] , d[48] , d[23] , d[3]); // used by 4
xor6 hx_14 (h[14], c[2] , c[14] , d[54] , d[42] , d[38] , d[19]); // used by 3
xor6 hx_15 (h[15], c[4] , c[9] , d[49] , d[44] , d[21] , d[6]); // used by 3
xor6 hx_16 (h[16], c[6] , c[12] , d[52] , d[46] , d[24] , d[12]); // used by 3
xor6 hx_17 (h[17], c[1] , c[13] , d[53] , d[41] , d[30] , d[18]); // used by 4
xor6 hx_18 (h[18], c[18] , d[58] , d[37] , d[31] , d[30] , d[3]); // used by 3
xor6 hx_19 (h[19], c[8] , c[11] , c[12] , d[52] , d[51] , d[48]); // used by 3
xor6 hx_20 (h[20], c[16] , d[56] , d[33] , d[28] , d[8] , d[0]); // used by 3
xor6 hx_21 (h[21], c[3] , d[43] , d[38] , d[26] , d[18] , d[8]); // used by 2
xor6 hx_22 (h[22], c[23] , d[63] , d[32] , d[30] , d[23] , d[14]); // used by 3
xor6 hx_23 (h[23], c[7] , c[22] , d[62] , d[47] , d[29] , d[2]); // used by 3
xor6 hx_24 (h[24], c[19] , c[23] , d[63] , d[59] , d[35] , d[16]); // used by 2
xor6 hx_25 (h[25], c[3] , d[43] , d[34] , d[24] , d[11] , d[10]); // used by 3
xor6 hx_26 (h[26], d[38] , d[17] , d[9] , d[1] , 1‘b0 , 1’b0); // used by 1
xor6 hx_27 (h[27], c[6] , c[19] , d[59] , d[46] , d[39] , d[17]); // used by 2
xor6 hx_28 (h[28], c[21] , d[61] , d[21] , d[15] , d[10] , d[6]); // used by 2
xor6 hx_29 (h[29], c[3] , d[43] , d[31] , d[26] , d[3] , d[1]); // used by 1
xor6 hx_30 (h[30], c[14] , d[54] , d[28] , d[23] , d[21] , d[1]); // used by 1
xor6 hx_31 (h[31], c[4] , d[44] , d[37] , d[27] , d[9] , d[6]); // used by 2
xor6 hx_32 (h[32], c[3] , c[4] , d[44] , d[43] , d[26] , d[17]); // used by 1
xor6 hx_33 (h[33], c[6] , c[20] , d[60] , d[46] , d[39] , d[27]); // used by 3
xor6 hx_34 (h[34], c[2] , d[42] , d[38] , d[24] , d[22] , d[21]); // used by 2
xor6 hx_35 (h[35], c[8] , d[48] , d[25] , d[18] , 1‘b0 , 1’b0); // used by 4
xor6 hx_36 (h[36], c[15] , d[55] , d[35] , d[18] , 1‘b0 , 1’b0); // used by 2
xor6 hx_37 (h[37], c[18] , d[58] , d[14] , 1‘b0 , 1’b0 , 1‘b0); // used by 3
xor6 hx_38 (h[38], c[2] , c[4] , d[44] , d[42] , 1’b0 , 1‘b0); // used by 3
xor6 hx_39 (h[39], c[10] , d[50] , d[32] , 1’b0 , 1‘b0 , 1’b0); // used by 2
xor6 hx_40 (h[40], c[12] , d[52] , d[2] , 1‘b0 , 1’b0 , 1‘b0); // used by 2
xor6 hx_41 (h[41], d[37] , d[8] , d[3] , 1’b0 , 1‘b0 , 1’b0); // used by 2
xor6 hx_42 (h[42], c[17] , d[57] , d[13] , d[4] , 1‘b0 , 1’b0); // used by 2
xor6 hx_43 (h[43], d[15] , d[9] , h[0] , h[2] , h[18] , 1‘b0); // used by 1
xor6 hx_44 (h[44], d[17] , d[15] , d[6] , d[1] , 1’b0 , 1‘b0); // used by 5
xor6 hx_45 (h[45], d[31] , d[27] , d[5] , d[0] , 1’b0 , 1‘b0); // used by 3
xor6 hx_46 (h[46], d[32] , d[19] , d[9] , 1’b0 , 1‘b0 , 1’b0); // used by 2
xor6 hx_47 (h[47], c[5] , c[15] , d[55] , d[45] , d[38] , d[33]); // used by 1
xor6 hx_48 (h[48], d[28] , d[20] , d[12] , 1‘b0 , 1’b0 , 1‘b0); // used by 2
xor6 hx_49 (h[49], d[24] , d[21] , d[13] , 1’b0 , 1‘b0 , 1’b0); // used by 2
xor6 hx_50 (h[50], c[1] , d[41] , d[26] , 1‘b0 , 1’b0 , 1‘b0); // used by 2
xor6 hx_51 (h[51], c[9] , d[49] , d[32] , 1’b0 , 1‘b0 , 1’b0); // used by 2
xor6 hx_52 (h[52], h[1] , h[2] , h[7] , h[23] , 1‘b0 , 1’b0); // used by 1
xor6 hx_53 (h[53], c[23] , d[63] , d[30] , d[28] , d[21] , d[1]); // used by 1
xor6 hx_54 (h[54], c[9] , d[49] , d[12] , d[8] , 1‘b0 , 1’b0); // used by 2
xor6 hx_55 (h[55], c[16] , d[56] , d[25] , d[10] , 1‘b0 , 1’b0); // used by 2
xor6 hx_56 (h[56], c[5] , c[22] , d[62] , d[45] , 1‘b0 , 1’b0); // used by 2
xor6 hx_57 (h[57], c[7] , c[11] , d[51] , d[47] , 1‘b0 , 1’b0); // used by 2
xor6 hx_58 (h[58], c[11] , c[14] , d[54] , d[51] , 1‘b0 , 1’b0); // used by 2
xor6 hx_59 (h[59], c[19] , c[21] , d[61] , d[59] , 1‘b0 , 1’b0); // used by 2
xor6 hx_60 (h[60], d[32] , d[30] , h[22] , 1‘b0 , 1’b0 , 1‘b0); // used by 2
xor6 hx_61 (h[61], d[33] , d[9] , d[0] , 1’b0 , 1‘b0 , 1’b0); // used by 2
xor6 hx_62 (h[62], c[3] , d[43] , d[19] , 1‘b0 , 1’b0 , 1‘b0); // used by 3
xor6 hx_63 (h[63], c[0] , d[40] , d[28] , d[7] , 1’b0 , 1‘b0); // used by 4
xor6 hx_64 (h[64], d[34] , d[29] , d[20] , 1’b0 , 1‘b0 , 1’b0); // used by 2
xor6 hx_65 (h[65], c[13] , d[53] , d[36] , 1‘b0 , 1’b0 , 1‘b0); // used by 2
xor6 hx_66 (h[66], d[38] , d[22] , d[16] , d[0] , 1’b0 , 1‘b0); // used by 4
xor6 hx_67 (h[67], c[15] , d[55] , d[20] , d[1] , 1’b0 , 1‘b0); // used by 3
xor6 hx_68 (h[68], h[0] , h[2] , h[4] , h[20] , 1’b0 , 1‘b0); // used by 1
xor6 hx_69 (h[69], d[38] , d[34] , d[29] , d[27] , d[4] , d[1]); // used by 1
xor6 hx_70 (h[70], c[13] , d[53] , d[39] , d[27] , h[33] , 1’b0); // used by 1
xor6 hx_71 (h[71], h[9] , h[14] , 1‘b0 , 1’b0 , 1‘b0 , 1’b0); // used by 1
xor6 hx_72 (h[72], c[4] , d[44] , d[34] , d[26] , d[15] , h[1]); // used by 1
xor6 hx_73 (h[73], d[22] , d[10] , d[6] , 1‘b0 , 1’b0 , 1‘b0); // used by 2
xor6 hx_74 (h[74], h[9] , h[11] , h[16] , 1’b0 , 1‘b0 , 1’b0); // used by 1
xor6 hx_75 (h[75], d[11] , d[7] , d[5] , d[4] , d[2] , h[5]); // used by 1
xor6 hx_76 (h[76], c[18] , d[58] , d[39] , d[36] , d[14] , d[13]); // used by 1
xor6 hx_77 (h[77], c[7] , c[13] , c[17] , d[57] , d[53] , d[47]); // used by 1
xor6 hx_78 (h[78], c[2] , d[42] , h[15] , h[16] , h[26] , 1‘b0); // used by 1
xor6 hx_79 (h[79], d[13] , d[11] , d[4] , h[2] , h[5] , h[12]); // used by 1
xor6 hx_80 (h[80], c[8] , c[19] , c[20] , d[60] , d[59] , d[48]); // used by 1
xor6 hx_81 (h[81], h[5] , h[11] , h[12] , h[13] , 1’b0 , 1‘b0); // used by 1
xor6 hx_82 (h[82], d[19] , d[7] , d[5] , d[4] , d[2] , h[0]); // used by 1
xor6 hx_83 (h[83], d[31] , d[30] , d[26] , d[18] , h[5] , h[10]); // used by 1
xor6 hx_84 (h[84], d[3] , d[0] , h[4] , h[17] , 1’b0 , 1‘b0); // used by 1
xor6 hx_85 (h[85], c[3] , d[43] , d[29] , d[27] , d[22] , d[17]); // used by 1
xor6 hx_86 (h[86], h[2] , h[4] , h[18] , 1’b0 , 1‘b0 , 1’b0); // used by 1
xor6 hx_87 (h[87], d[33] , d[27] , d[17] , d[16] , d[15] , h[0]); // used by 1
xor6 hx_88 (h[88], h[22] , h[28] , 1‘b0 , 1’b0 , 1‘b0 , 1’b0); // used by 1
xor6 hx_89 (h[89], c[0] , d[40] , d[35] , h[1] , h[3] , h[8]); // used by 1
xor6 hx_90 (h[90], d[3] , h[0] , h[2] , h[9] , h[11] , 1‘b0); // used by 1
xor6 hx_91 (h[91], d[31] , d[28] , d[24] , d[14] , d[11] , d[6]); // used by 1
xor6 hx_92 (h[92], c[7] , c[8] , d[48] , d[47] , d[34] , d[33]); // used by 1
xor6 hx_93 (h[93], d[36] , d[7] , h[7] , h[10] , h[11] , h[18]); // used by 1
xor6 hx_94 (h[94], d[12] , d[4] , h[6] , h[8] , h[14] , h[20]); // used by 1
xor6 hx_95 (h[95], h[17] , h[19] , 1’b0 , 1‘b0 , 1’b0 , 1‘b0); // used by 1
xor6 hx_96 (h[96], d[23] , d[15] , d[11] , d[5] , d[2] , h[6]); // used by 1
xor6 hx_97 (h[97], c[14] , d[54] , d[36] , d[35] , d[32] , d[26]); // used by 1
xor6 hx_98 (h[98], h[5] , h[6] , h[10] , 1’b0 , 1‘b0 , 1’b0); // used by 1
xor6 hx_99 (h[99], d[35] , d[26] , d[25] , d[19] , d[4] , d[1]); // used by 1
xor6 hx_100 (h[100], d[24] , h[0] , h[2] , h[7] , h[15] , h[23]); // used by 1
xor6 hx_101 (h[101], c[15] , d[55] , d[38] , d[31] , d[28] , d[26]); // used by 1
xor6 hx_102 (h[102], h[3] , h[9] , h[27] , 1‘b0 , 1’b0 , 1‘b0); // used by 1
xor6 hx_103 (h[103], d[24] , d[23] , d[11] , h[1] , h[25] , 1’b0); // used by 1
xor6 hx_104 (h[104], c[2] , c[10] , d[50] , d[42] , d[36] , d[29]); // used by 1
xor6 hx_105 (h[105], d[9] , h[5] , h[13] , h[20] , 1‘b0 , 1’b0); // used by 1
xor6 hx_106 (h[106], c[18] , d[58] , d[39] , d[19] , d[12] , d[11]); // used by 1
xor6 hx_107 (h[107], h[0] , h[5] , h[13] , h[15] , h[17] , 1‘b0); // used by 1
xor6 hx_108 (h[108], c[21] , d[61] , d[33] , d[11] , d[8] , d[7]); // used by 1
xor6 hx_109 (h[109], d[1] , h[3] , h[5] , h[12] , h[21] , 1’b0); // used by 1
xor6 hx_110 (h[110], c[4] , d[44] , d[27] , d[13] , d[12] , d[3]); // used by 1
xor6 hx_111 (h[111], d[31] , d[5] , h[1] , h[4] , h[14] , h[24]); // used by 1
xor6 hx_112 (h[112], h[17] , h[25] , 1‘b0 , 1’b0 , 1‘b0 , 1’b0); // used by 1
xor6 hx_113 (h[113], c[2] , d[42] , d[7] , h[0] , h[3] , h[8]); // used by 1
xor6 hx_114 (h[114], d[16] , h[2] , h[6] , h[11] , h[13] , 1‘b0); // used by 1
endmodule
常用CRC類型PCIe:CRC16
用于鏈路層幀的校驗;
多項式是100Bh(16,12,3,1,0);
初始值是16’hFFFF;
發(fā)送電路中對計算結果(余數(shù))取補,即在發(fā)送過程中進行比特取反;
接收電路比較本地計算的CRC結果與接收到的CRC結果,判斷兩者是否匹配,接收到的CRC不參與校驗計算。
PCIe:CRC32
用于處理層數(shù)據(jù)包的校驗;
多項式是04CllDB7h(32,26,23,22,16,12,11,10,8,7,5,4,2,1,0);
初始值是32’hFFFF_FFFF;
發(fā)送電路中對計算結果(余數(shù))取補,即在發(fā)送過程中對比特取反;
接收電路比較本地計算的CRC結果與接收到的CRC結果,判斷兩者是否匹配,接收到的CRC不參與校驗計算。
USB3.0:CRC16
用于USB3.0包頭校驗;
多項式是l00Bh(16,12,3,1,0);
初始值是16’hFFFF;
在傳輸過程中對結果取補;
接收電路的余數(shù)是16’hFCAA;
接收的CRC值參與接收端的CRC計算。
關于和已知余數(shù)進行比較:
接收電路邊接收數(shù)據(jù)邊計算CRC校驗值,如果接收數(shù)據(jù)中沒有錯誤,則計算得到的余數(shù)為5’b0_100。將接收端的CRC計算結果和一個已知的值進行比較,比和接收的CRC進行比較要更加簡單。在實際電路設計中,當接收到END符號時,電路內(nèi)部產(chǎn)生end_pkt(包結束)信號,但此時接收數(shù)據(jù)中的CRC已經(jīng)進入接收CRC計算電路中了,對于變長的數(shù)據(jù)包來說,預先知道接收的數(shù)據(jù)何時結束及接收包中CRC域何時開始是比較困難的。此時可以考慮使用多級移位寄存器對數(shù)據(jù)進行緩沖,然后得到新的start_pkt及end_pkt信號,并利用它們將接收數(shù)據(jù)域和接收的CRC域區(qū)分開。
USB2.0:CRC16
用于USB2.0數(shù)據(jù)傳輸;
多項式是8005h(16,15,2,0);
初始值是16’hFFFF;
在發(fā)送過程中對計算結果進行取補;
接收電路的余數(shù)是16’h800D;
在接收端,接收到的CRC值包含在CRC計算中。
USB:CRC5
用于鏈路控制字段的校驗;
多項式是05h(5,2,0);
初始值是5’b1_lll;
在發(fā)送過程中對計算結果取補;
接收端的校驗結果都是5’b0_l100;
接收的CRC值參與CRC計算;
接收電路將校驗結果和5’b0_1100進行比較。
USB3.0:CRC32
用于USB3.0數(shù)據(jù)包傳輸;
多項式是04Cl_1DB7h(32,26,23,22,16,12,11,10,8,7,5,4,2,1,0);
初始值是32’hFFFF_FFFF;
發(fā)送電路在傳輸過程中對余數(shù)(校驗結果)取補;
接收電路的校驗余數(shù)是32’hC704_DD7B;
接收到的CRC值參與CRC計算;
接收電路將校驗結果和32’hC704_DD7B進行比較。
SATA:CRC32
用于FIS(Frame Information Structure)包;
多項式是04C11DB7h(32,26,23,22,16,12,11,10,8,7,5,4,2,1,0);
初始值是32’h5232_5032;
發(fā)送電路對校驗余數(shù)校驗結果取補,在傳輸過程中,將1字節(jié)內(nèi)的比特翻轉;
接收電路的余數(shù)是16’h0000;
接收端,接收的CRC值參與校驗運算,校驗結果應該為全0。
關于實例整篇文章偏理論,計算實例可以通過(https://www.easics.com/crctool/)(可以直接得到Verilog源碼)計算得到,當然還有一個腳本可以使用-任意多項式,任意位寬crc verilog代碼自動生成perl腳本《https://cloud.tencent.com/developer/article/1652744》。
使用方法:
鏈接:https://pan.baidu.com/s/1pBlDHDxGRoXwyFKVuypR9A提取碼:open
gen_crc.pl 輸入數(shù)據(jù)位寬 多項式
多項式輸入方法:從低位向高位依次輸入,以USB TOKEN為例,x^5 + x^2 + 1,從低到高位輸入為101001usb token的crc生成方法:gen_crc.pl 8 101001usb data的crc(x^16+x^15+x^2+1)生成方法:gen_crc.pl 8 10100000000000011
鏈接: https://pan.baidu.com/s/1kqRsSBJRq64tNnmv1SYjXQ
提取碼: jr8i
說明:
windows下要安裝ActivePerl。
1、在Windows上用ActivePerl寫一個HelloWorld,測試完畢后,我們在C盤創(chuàng)建一個文件。
HelloWorld.pl
2、右鍵HelloWorld.pl文件 -》 用記事本打開該文件,然后輸入以下代碼:
#!/usr/bin/env perl
print “HelloWorld”
3、然后保存
4、回到cmd命令提示符。
cd
返回到C盤根目錄
perl HelloWorld.pl
或者直接鍵入HelloWorld.pl
解釋下:2行代碼的作用
#!/usr/bin/env perl是典型的解釋器路徑聲明(魔法聲明),如果考慮到跨平臺,在Unix/Linux上使用的,是必須要加上這個聲明的,如果只是單純的在windows上學習Perl,這個聲明無關緊要。
print “HelloWorld”則是一條語句,作用就是在屏幕上輸出一個字符串,“”內(nèi)的則是字符串,例如小伙伴可以嘗試修改“”內(nèi)的內(nèi)容。
Linux下就命令行perl perlname.pl
我是在虛擬機下運行的,所以無需安裝特殊軟件,直接perl gen_crc.pl 8 101001
就可以了。
編輯:jq
-
寄存器
+關注
關注
31文章
5359瀏覽量
120818 -
數(shù)據(jù)
+關注
關注
8文章
7108瀏覽量
89299 -
Linux
+關注
關注
87文章
11329瀏覽量
209975 -
WINDOWS
+關注
關注
4文章
3554瀏覽量
89010 -
crc
+關注
關注
0文章
199瀏覽量
29502
原文標題:Verilog數(shù)字系統(tǒng)基礎設計-CRC
文章出處:【微信號:gh_339470469b7d,微信公眾號:FPGA與數(shù)據(jù)通信】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論