0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

掌握這幾種方法 你的接口查詢速度將飛速提升

馬哥Linux運(yùn)維 ? 來(lái)源:無(wú)名鼠輩 ? 作者:無(wú)名鼠輩 ? 2021-07-06 14:38 ? 次閱讀

1. MySQL查詢慢是什么體驗(yàn)?

大多數(shù)互聯(lián)網(wǎng)應(yīng)用場(chǎng)景都是讀多寫少,業(yè)務(wù)邏輯更多分布在寫上。對(duì)讀的要求大概就是要快。那么都有什么原因會(huì)導(dǎo)致我們完成一次出色的慢查詢呢?

1.1 索引

在數(shù)據(jù)量不是很大時(shí),大多慢查詢可以用索引解決,大多慢查詢也因?yàn)樗饕缓侠矶a(chǎn)生。

MySQL 索引基于 B+ 樹,這句話相信面試都背爛了,接著就可以問最左前綴索引、 B+ 樹和各種樹了。

說(shuō)到最左前綴,實(shí)際就是組合索引的使用規(guī)則,使用合理組合索引可以有效的提高查詢速度,為什么呢?

因?yàn)樗饕峦?。如果查詢條件包含在了組合索引中,比如存在組合索引(a,b),查詢到滿足 a 的記錄后會(huì)直接在索引內(nèi)部判斷 b 是否滿足,減少回表次數(shù)。

同時(shí),如果查詢的列恰好包含在組合索引中,即為覆蓋索引,無(wú)需回表。索引規(guī)則估計(jì)都知道,實(shí)際開發(fā)中也會(huì)創(chuàng)建和使用。問題可能更多的是:為什么建了索引還慢?

1.1.1 什么原因?qū)е滤饕?/p>

建了索引還慢,多半是索引失效(未使用),可用 explain 分析。索引失效常見原因有 :

where 中使用 != 或 《》 或 or 或表達(dá)式或函數(shù)(左側(cè))

like 語(yǔ)句 % 開頭

字符串未加’’

索引字段區(qū)分度過(guò)低,如性別

未匹配最左前綴

(一張嘴就知道老面試題了) 為什么這些做法會(huì)導(dǎo)致失效,成熟的 MySQL 也有自己的想法。

1.1.2 這些原因?yàn)槭裁磳?dǎo)致索引失效

如果要 MySQL 給一個(gè)理由,還是那棵 B+ 樹。

函數(shù)操作

當(dāng)在 查詢 where = 左側(cè)使用表達(dá)式或函數(shù)時(shí),如字段 A 為字符串型且有索引, 有 where length(a) = 6查詢,這時(shí)傳遞一個(gè) 6 到 A 的索引樹,不難想象在樹的第一層就迷路了。

隱式轉(zhuǎn)換

隱式類型轉(zhuǎn)換和隱式字符編碼轉(zhuǎn)換也會(huì)導(dǎo)致這個(gè)問題。

隱式類型轉(zhuǎn)換對(duì)于 JOOQ 這種框架來(lái)說(shuō)一般倒不會(huì)出現(xiàn)。

隱式字符編碼轉(zhuǎn)換在連表查詢時(shí)倒可能出現(xiàn),即連表字段的類型相同但字符編碼不同。

破壞了有序性

至于 Like 語(yǔ)句 % 開頭、字符串未加 ’’ 原因基本一致,MySQL 認(rèn)為對(duì)索引字段的操作可能會(huì)破壞索引有序性就機(jī)智的優(yōu)化掉了。

不過(guò),對(duì)于如性別這種區(qū)分度過(guò)低的字段,索引失效就不是因?yàn)檫@個(gè)原因。

1.1.3 性別字段為什么不要加索引

為什么索引區(qū)分度低的字段不要加索引。盲猜效率低,效率的確低,有時(shí)甚至?xí)扔跊]加。

對(duì)于非聚簇索引,是要回表的。假如有 100 條數(shù)據(jù),在 sex 字段建立索引,掃描到 51 個(gè) male,需要再回表掃描 51 行。還不如直接來(lái)一次全表掃描呢。

所以,InnoDB 引擎對(duì)于這種場(chǎng)景就會(huì)放棄使用索引,至于區(qū)分度多低多少會(huì)放棄,大致是某類型的數(shù)據(jù)占到總的 30% 左右時(shí),就會(huì)放棄使用該字段的索引,有興趣可以試一下。

1.1.4 有什么好用且簡(jiǎn)單的索引方法

前面說(shuō)到大多慢查詢都源于索引,怎么建立并用好索引。這里有一些簡(jiǎn)單的規(guī)則。

索引下推:性別字段不適合建索引,但確實(shí)存在查詢場(chǎng)景怎么辦?如果是多條件查詢,可以建立聯(lián)合索引利用該特性優(yōu)化。

覆蓋索引:也是聯(lián)合索引,查詢需要的信息在索引里已經(jīng)包含了,就不會(huì)再回表了。

前綴索引:對(duì)于字符串,可以只在前 N 位添加索引,避免不必要的開支。假如的確需要如關(guān)鍵字查詢,那交給更合適的如 ES 或許更好。

不要對(duì)索引字段做函數(shù)操作

對(duì)于確定的、寫多讀少的表或者頻繁更新的字段都應(yīng)該考慮索引的維護(hù)成本。

1.1.5 如何評(píng)價(jià) MySQL 選錯(cuò)了索引

有時(shí),建立了猛一看挺正確的索引,但事情卻沒按計(jì)劃發(fā)展。就像“為啥 XXX 有索引,根據(jù)它查詢還是慢查詢”。

此刻沒準(zhǔn)要自信點(diǎn):我的代碼不可能有 BUG,肯定是 MySQL 出了問題。MySQL 的確可能有點(diǎn)問題。

這種情況常見于建了一大堆索引,查詢條件一大堆。沒使用你想讓它用的那一個(gè),而是選了個(gè)區(qū)分度低的,導(dǎo)致過(guò)多的掃描。造成的原因基本有兩個(gè):

信息統(tǒng)計(jì)不準(zhǔn)確:可以使用 analyze table x重新分析。

優(yōu)化器誤判:可以 force index強(qiáng)制指定?;蛐薷恼Z(yǔ)句引導(dǎo)優(yōu)化器,增加或刪除索引繞過(guò)。

但根據(jù)我淺薄的經(jīng)驗(yàn)來(lái)看,更可能是因?yàn)槟憬诵]必要的索引導(dǎo)致的。不會(huì)真有人以為 MySQL 沒自己機(jī)靈吧?

除了上面這些索引原因外,還有下面這些不常見或者說(shuō)不好判斷的原因存在。

1.2 等MDL鎖

在 MySQL 5.5 版本中引入了 MDL,對(duì)一個(gè)表做 CRUD 操作時(shí),自動(dòng)加 MDL 讀鎖;對(duì)表結(jié)構(gòu)做變更時(shí),加 MDL 寫鎖。讀寫鎖、寫鎖間互斥。

當(dāng)某語(yǔ)句拿 MDL 寫鎖就會(huì)阻塞 MDL 讀鎖,可以使用show processlist命令查看處于Waiting for table metadata lock狀態(tài)的語(yǔ)句。

1.3 等 flush

flush 很快,大多是因?yàn)?flush 命令被別的語(yǔ)句堵住,它又堵住了 select 。通過(guò)show processlist命令查看時(shí)會(huì)發(fā)現(xiàn)處于Waiting for table flush狀態(tài)。

1.4 等行鎖

某事物持有寫鎖未提交。

1.5 當(dāng)前讀

InnoDB 默認(rèn)級(jí)別是可重復(fù)讀。設(shè)想一個(gè)場(chǎng)景:事物 A 開始事務(wù),事務(wù) B 也開始執(zhí)行大量更新。B 率先提交, A 是當(dāng)前讀,就要依次執(zhí)行 undo log ,直到找到事務(wù) B 開始前的值。

1.6 大表場(chǎng)景

在未二次開發(fā)的 MYSQL 中,上億的表肯定算大表,這種情況即使在索引、查詢層面做到了較好實(shí)現(xiàn),面對(duì)頻繁聚合操作也可能會(huì)出現(xiàn) IO 或 CPU 瓶頸,即使是單純查詢,效率也會(huì)下降。

且 Innodb 每個(gè) B+ 樹節(jié)點(diǎn)存儲(chǔ)容量是 16 KB,理論上可存儲(chǔ) 2kw 行左右,這時(shí)樹高為3層。我們知道,innodb_buffer_pool 用來(lái)緩存表及索引,如果索引數(shù)據(jù)較大,緩存命中率就堪憂,同時(shí) innodb_buffer_pool 采用 LRU 算法進(jìn)行頁(yè)面淘汰,如果數(shù)據(jù)量過(guò)大,對(duì)老或非熱點(diǎn)數(shù)據(jù)的查詢可能就會(huì)把熱點(diǎn)數(shù)據(jù)給擠出去。

所以對(duì)于大表常見優(yōu)化即是分庫(kù)分表和讀寫分離了。

1.6.1 分庫(kù)分表

方案

是分庫(kù)還是分表呢?這要具體分析。

如果磁盤或網(wǎng)絡(luò)有 IO 瓶頸,那就要分庫(kù)和垂直分表。

如果是 CPU 瓶頸,即查詢效率偏低,水平分表。

水平即切分?jǐn)?shù)據(jù),分散原有數(shù)據(jù)到更多的庫(kù)表中。

垂直即按照業(yè)務(wù)對(duì)庫(kù),按字段對(duì)表切分。

工具方面有 sharding-sphere、TDDL、Mycat。動(dòng)起手來(lái)需要先評(píng)估分庫(kù)、表數(shù),制定分片規(guī)則選 key,再開發(fā)和數(shù)據(jù)遷移,還要考慮擴(kuò)容問題。

問題

實(shí)際運(yùn)行中,寫問題不大,主要問題在于唯一 ID 生成、非 partition key 查詢、擴(kuò)容。

唯一 ID 方法很多,DB 自增、Snowflake、號(hào)段、一大波GUID算法等。

非 partition key 查詢常用映射法解決,映射表用到覆蓋索引的話還是很快的。或者可以和其他 DB 組合。

擴(kuò)容要根據(jù)分片時(shí)的策略確定,范圍分片的話就很簡(jiǎn)單,而隨機(jī)取模分片就要遷移數(shù)據(jù)了。也可以用范圍 + 取模的模式分片,先取模再范圍,可以避免一定程度的數(shù)據(jù)遷移。

當(dāng)然,如果分庫(kù)還會(huì)面臨事務(wù)一致性和跨庫(kù) join 等問題。

1.6.2 讀寫分離

為什么要讀寫分離

分表針對(duì)大表解決 CPU 瓶頸,分庫(kù)解決 IO 瓶頸,二者將存儲(chǔ)壓力解決了。但查詢還不一定。

如果落到 DB 的 QPS 還是很高,且讀遠(yuǎn)大于寫,就可以考慮讀寫分離,基于主從模式將讀的壓力分?jǐn)?,避免單機(jī)負(fù)載過(guò)高,同時(shí)也保證了高可用,實(shí)現(xiàn)了負(fù)載均衡。

問題

主要問題有過(guò)期讀和分配機(jī)制。

過(guò)期讀,也就是主從延時(shí)問題,這個(gè)對(duì)于。

分配機(jī)制,是走主還是從庫(kù)??梢灾苯哟a中根據(jù)語(yǔ)句類型切換或者使用中間件。

1.7 小結(jié)

以上列舉了 MySQL 常見慢查詢?cè)蚝吞幚矸椒?,介紹了應(yīng)對(duì)較大數(shù)據(jù)場(chǎng)景的常用方法。

分庫(kù)分表和讀寫分離是針對(duì)大數(shù)據(jù)或并發(fā)場(chǎng)景的,同時(shí)也為了提高系統(tǒng)的穩(wěn)定和拓展性。但也不是所有的問題都最適合這么解決。

2. 如何評(píng)價(jià) ElasticSearch

前文有提到對(duì)于關(guān)鍵字查詢可以使用 ES。那接著聊聊 ES 。

2.1 可以干什么

ES 是基于 Lucene 的近實(shí)時(shí)分布式搜索引擎。使用場(chǎng)景有全文搜索、NoSQL Json 文檔數(shù)據(jù)庫(kù)、監(jiān)控日志、數(shù)據(jù)采集分析等。

對(duì)非數(shù)據(jù)開發(fā)來(lái)說(shuō),常用的應(yīng)該就是全文檢索和日志了。ES 的使用中,常和 Logstash, Kibana 結(jié)合,也成為 ELK 。先來(lái)瞧瞧日志怎么用的。

下面是我司日志系統(tǒng)某檢索操作:打開 Kibana 在 Discover 頁(yè)面輸入格式如 “xxx” 查詢。

該操作可以在 Dev Tools 的控制臺(tái)替換為:

GET yourIndex/_search { “from” : 0, “size” : 10, “query” : { “match_phrase” : { “l(fā)og” : “xxx” } } }

什么意思?Discover 中加上 “” 和 console 中的 match_phrase 都代表這是一個(gè)短語(yǔ)匹配,意味著只保留那些包含全部搜索詞項(xiàng),且位置與搜索詞項(xiàng)相同的文檔。

2.2 ES 的結(jié)構(gòu)

在 ES 7.0 之前存儲(chǔ)結(jié)構(gòu)是 Index -》 Type -》 Document,按 MySQL 對(duì)比就是 database - table - id(實(shí)際這種對(duì)比不那么合理)。7.0 之后 Type 被廢棄了,就暫把 index 當(dāng)做 table 吧。

在 Dev Tools 的 Console 可以通過(guò)以下命令查看一些基本信息。也可以替換為 crul 命令。

GET /_cat/health?v&pretty:查看集群健康狀態(tài)GET /_cat/shards?v :查看分片狀態(tài)GET yourindex/_mapping :index mapping結(jié)構(gòu)GET yourindex/_settings :index setting結(jié)構(gòu)GET /_cat/indices?v :查看當(dāng)前節(jié)點(diǎn)所有索引信息

重點(diǎn)是 mapping 和 setting ,mapping 可以理解為 MySQL 中表的結(jié)構(gòu)定義,setting 負(fù)責(zé)控制如分片數(shù)量、副本數(shù)量。

以下是截取了某日志 index 下的部分 mapping 結(jié)構(gòu),ES 對(duì)字符串類型會(huì)默認(rèn)定義成 text ,同時(shí)為它定義一個(gè)叫做 keyword 的子字段。這兩的區(qū)別是:text 類型會(huì)進(jìn)行分詞, keyword 類型不會(huì)進(jìn)行分詞。

“******”: { “mappings”: { “doc”: { “properties”: { “appname”: { “type”: “text”, “fields”: { “keyword”: { “type”: “keyword”, “ignore_above”: 256 } }

2.3 ES 查詢?yōu)槭裁纯欤?/p>

分詞是什么意思?看完 ES 的索引原理你就 get 了。

ES 基于倒排索引。嘛意思?傳統(tǒng)索引一般是以文檔 ID 作索引,以內(nèi)容作為記錄。倒排索引相反,根據(jù)已有屬性值,去找到相應(yīng)的行所在的位置,也就是將單詞或內(nèi)容作為索引,將文檔 ID 作為記錄。

圖中的 Ada、Sara 被稱作 term,其實(shí)就是分詞后的詞了。如果把圖中的 Term Index 去掉,是不是有點(diǎn)像 MySQL 了?Term Dictionary 就像二級(jí)索引,但 MySQL 是保存在磁盤上的,檢索一個(gè) term 需要若干次的 random access 磁盤操作。

而 ES 在 Term Dictionary 基礎(chǔ)上多了層 Term Index ,它以 FST 形式保存在內(nèi)存中,保存著 term 的前綴,借此可以快速的定位到 Term dictionary 的本 term 的 offset 。而且 FST 形式和 Term dictionary 的 block 存儲(chǔ)方式都很節(jié)省內(nèi)存和磁盤空間。

到這就知道為啥快了,就是因?yàn)橛辛藘?nèi)存中的 Term Index , 它為 term 的索引 Term Dictionary 又做了一層索引。

不過(guò),也不是說(shuō) ES 什么查詢都比 MySQL 快。檢索大致分為兩類。

2.3.1 分詞后檢索

ES 的索引存儲(chǔ)的就是分詞排序后的結(jié)果。比如圖中的 Ada,在 MySQL 中 %da% 就掃全表了,但對(duì) ES 來(lái)說(shuō)可以快速定位

2.3.2 精確檢索

該情況其實(shí)相差是不大的,因?yàn)?Term Index 的優(yōu)勢(shì)沒了,卻還要借此找到在 term dictionary 中的位置。也許由于 MySQL 覆蓋索引無(wú)需回表會(huì)更快一點(diǎn)。

2.4 什么時(shí)候用 ES

如前所述,對(duì)于業(yè)務(wù)中的查詢場(chǎng)景什么時(shí)候適合使用 ES ?我覺得有兩種。

2.4.1 全文檢索

在 MySQL 中字符串類型根據(jù)關(guān)鍵字模糊查詢就是一場(chǎng)災(zāi)難,對(duì) ES 來(lái)說(shuō)卻是小菜一碟。具體場(chǎng)景,比如消息表對(duì)消息內(nèi)容的模糊查詢,即聊天記錄查詢。

但要注意,如果需要的是類似廣大搜索引擎的關(guān)鍵字查詢而非日志的短語(yǔ)匹配查詢,就需要對(duì)中文進(jìn)行分詞處理,最廣泛使用的是 ik 。Ik 分詞器的安裝這里不再細(xì)說(shuō)。

什么意思呢?

分詞

開頭對(duì)日志的查詢,鍵入 “我可真是個(gè)機(jī)靈鬼” 時(shí),只會(huì)得到完全匹配的信息。

而倘若去掉 “”,又會(huì)得到按照 “我”、“可”,“真”…。分詞匹配到的所有信息,這明顯會(huì)返回很多信息,也是不符合中文語(yǔ)義的。實(shí)際期望的分詞效果大概是“我”、“可”、“真是”,“機(jī)靈鬼”,之后再按照這種分詞結(jié)果去匹配查詢。

這是 ES 默認(rèn)的分詞策略對(duì)中文的支持不友善導(dǎo)致的,按照英語(yǔ)單詞字母來(lái)了,可英語(yǔ)單詞間是帶有空格的。這也是不少國(guó)外軟件中文搜索效果不 nice 的原因之一。

對(duì)于該問題,你可以在 console 使用下方命令,測(cè)試當(dāng)前 index 的分詞效果。

POST yourindex/_analyze { “field”:“yourfield”, “text”:“我可真是個(gè)機(jī)靈鬼” }

2.4.2 組合查詢

如果數(shù)據(jù)量夠大,表字段又夠多。把所有字段信息丟到 ES 里創(chuàng)建索引是不合理的。使用 MySQL 的話那就只能按前文提到的分庫(kù)分表、讀寫分離來(lái)了。何不組合下。

ES + MySQL

將要參與查詢的字段信息加上 id,放入 ES,做好分詞。將全量信息放入 MySQL,通過(guò) id 快速檢索。

ES + HBASE

如果要省去分庫(kù)分表什么的,或許可以拋棄 MySQL ,選擇分布式數(shù)據(jù)庫(kù),比如 HBASE , 對(duì)于這種 NOSQL 來(lái)說(shuō),存儲(chǔ)能力海量,擴(kuò)容 easy ,根據(jù) rowkey 查詢也很快。

以上思路都是經(jīng)典的索引與數(shù)據(jù)存儲(chǔ)隔離的方案了。

當(dāng)然,攤子越大越容易出事,也會(huì)面臨更多的問題。使用 ES 作索引層,數(shù)據(jù)同步、時(shí)序性、mapping 設(shè)計(jì)、高可用等都需要考慮。

畢竟和單純做日志系統(tǒng)對(duì)比,日志可以等待,用戶不能。

2.5 小結(jié)

本節(jié)簡(jiǎn)單介紹了 ES 為啥快,和這個(gè)快能用在哪。現(xiàn)在你可以打開 Kibana 的控制臺(tái)試一試了。

如果想在 Java 項(xiàng)目中接入的話,有 SpringBoot 加持,在 ES 環(huán)境 OK 的前提下,完全是開箱即用,就差一個(gè)依賴了?;镜?CRUD 支持都是完全 OK 的。

3. HBASE

前面有提到 HBASE,什么是 HBASE ,鑒于篇幅這里簡(jiǎn)單說(shuō)說(shuō)。

3.1 存儲(chǔ)結(jié)構(gòu)

關(guān)系型數(shù)據(jù)庫(kù)如 MySQL 是按行來(lái)的。

Row key 是主鍵,按照字典序排序。TimeStamp 是版本號(hào)。info 和 area 都是列簇(column Family),列簇將表進(jìn)行橫向切割。name、age 叫做列,屬于某一個(gè)列簇,可進(jìn)行動(dòng)態(tài)添加。Cell 是具體的 Value 。

3.2 OLTP 和 OLAP

數(shù)據(jù)處理大致可分成兩大類:聯(lián)機(jī)事務(wù)處理OLTP(on-line transaction processing)、聯(lián)機(jī)分析處理OLAP(On-Line Analytical Processing)。

OLTP是傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)的主要應(yīng)用,主要是基本的、日常的事務(wù)處理。

OLAP是數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng)的主要應(yīng)用,支持復(fù)雜分析,側(cè)重決策支持,提供直觀易懂的查詢結(jié)果。

面向列的適合做 OLAP,面向行的適用于聯(lián)機(jī)事務(wù)處理(OLTP)。不過(guò) HBASE 并不是 OLAP ,他沒有 transaction,實(shí)際上也是面向 CF 的。一般也沒多少人用 HBASE 做 OLAP 。

3.3 RowKey

HBASE 表設(shè)計(jì)的好不好,就看 RowKey 設(shè)計(jì)。這是因?yàn)?HBASE 只支持三種查詢方式

1、基于 Rowkey 的單行查詢 2、基于 Rowkey 的范圍掃描 3、全表掃描

可見 HBASE 并不支持復(fù)雜查詢。

3.4 使用場(chǎng)景

HBASE 并非適用于實(shí)時(shí)快速查詢。它更適合寫密集型場(chǎng)景,它擁用快速寫入能力,而查詢對(duì)于單條或小面積查詢是 OK 的,當(dāng)然也只能根據(jù) rowkey。但它的性能和可靠性非常高,不存在單點(diǎn)故障。

4. 總結(jié)

個(gè)人覺得軟件開發(fā)是循序漸進(jìn)的,技術(shù)服務(wù)于項(xiàng)目,合適比新穎復(fù)雜更重要。

如何完成一次快速的查詢?最該做的還是先找找自己的 Bug,解決了當(dāng)前問題再創(chuàng)造新問題。

本文列舉到的部分方案對(duì)于具體實(shí)現(xiàn)大多一筆帶過(guò),實(shí)際無(wú)論是 MySQL 的分表還是 ES 的業(yè)務(wù)融合都會(huì)面臨很多細(xì)節(jié)和困難的問題,搞工程的總要絕知此事要躬行。

文章轉(zhuǎn)載:llc687.top/post/如何完成一次快速的查詢

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4331

    瀏覽量

    62633
  • MySQL
    +關(guān)注

    關(guān)注

    1

    文章

    811

    瀏覽量

    26580
  • OLAP
    +關(guān)注

    關(guān)注

    0

    文章

    24

    瀏覽量

    10105
  • BUG
    BUG
    +關(guān)注

    關(guān)注

    0

    文章

    155

    瀏覽量

    15670

原文標(biāo)題:這幾種技巧,能有效幫你提升接口查詢速度

文章出處:【微信號(hào):magedu-Linux,微信公眾號(hào):馬哥Linux運(yùn)維】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    RJ45與光纖接口的轉(zhuǎn)接方法 RJ45接口的安全性問題分析

    RJ45與光纖接口的轉(zhuǎn)接方法 RJ45接口與光纖接口之間的轉(zhuǎn)接通常需要使用特定的轉(zhuǎn)換器或模塊。以下是幾種常見的轉(zhuǎn)接
    的頭像 發(fā)表于 12-17 15:38 ?324次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?215次閱讀
    Pytorch深度學(xué)習(xí)訓(xùn)練的<b class='flag-5'>方法</b>

    如何提升 ChatGPT 的響應(yīng)速度

    提升 ChatGPT 的響應(yīng)速度是一個(gè)涉及多個(gè)層面的復(fù)雜問題。以下是一些可能的方法和策略,可以幫助提高 ChatGPT 的響應(yīng)速度: 優(yōu)化算法 : 并行處理 :通過(guò)并行處理技術(shù),可以讓
    的頭像 發(fā)表于 10-25 17:39 ?673次閱讀

    環(huán)路測(cè)試方法有哪幾種

    。環(huán)路測(cè)試的目的是確保循環(huán)能夠正確地開始、執(zhí)行和終止,以及在循環(huán)內(nèi)部的邏輯是否正確。 環(huán)路測(cè)試通常包括以下幾種方法: 基本路徑測(cè)試 :這是最基礎(chǔ)的環(huán)路測(cè)試方法,它關(guān)注于測(cè)試循環(huán)的基本執(zhí)行路徑。測(cè)試者會(huì)創(chuàng)建測(cè)試用例,確保循環(huán)能夠按照預(yù)期執(zhí)行,包括循
    的頭像 發(fā)表于 09-12 14:35 ?612次閱讀

    直流無(wú)刷電機(jī)調(diào)速有幾種方法及應(yīng)用

    直流無(wú)刷電機(jī)(BLDC)是一種高效、高可靠性的電機(jī),廣泛應(yīng)用于各種工業(yè)和消費(fèi)電子產(chǎn)品中。調(diào)速是電機(jī)控制中的一個(gè)重要方面,它允許電機(jī)在不同的速度下運(yùn)行,以滿足不同的應(yīng)用需求。直流無(wú)刷電機(jī)的調(diào)速方法
    的頭像 發(fā)表于 09-03 10:43 ?1801次閱讀

    stm32程序燒錄的幾種方法?

    STM32是一款由STMicroelectronics公司推出的32位微控制器,廣泛應(yīng)用于嵌入式系統(tǒng)開發(fā)。燒錄STM32程序是開發(fā)過(guò)程中的重要環(huán)節(jié)。本文介紹幾種常見的STM32程序燒錄方法,包括
    的頭像 發(fā)表于 08-22 09:35 ?4286次閱讀

    測(cè)量串聯(lián)電路的Q值有幾種方法

    。 1. 共振法 共振法是一種常用的測(cè)量Q值的方法,它基于諧振電路在諧振頻率下的特性。在這種方法中,我們首先需要確定電路的諧振頻率,然后測(cè)量電路在該頻率下的阻抗。 原理: 當(dāng)電路達(dá)到諧振頻率時(shí),電感和電容的感抗相互抵消
    的頭像 發(fā)表于 08-09 17:10 ?1933次閱讀

    如何選擇天線 ,掌握這幾步很重要

    、航空航天、醫(yī)療和消費(fèi)電子等領(lǐng)域中起著關(guān)鍵作用。 由于有許多不同類型的天線,如何選擇天線?掌握這幾步很重要, 天線的性能取決于多個(gè)因素,包括頻率范圍、增益、方向性、極化和阻抗匹配等。選擇合適的天線需要考慮以
    的頭像 發(fā)表于 07-18 16:58 ?1004次閱讀
    如何選擇天線 ,<b class='flag-5'>掌握</b><b class='flag-5'>這幾</b>步很重要

    產(chǎn)生脈沖信號(hào)有幾種方法

    脈沖信號(hào)是一種在特定時(shí)間間隔內(nèi)具有特定幅度的信號(hào),它在電子學(xué)、通信、控制等領(lǐng)域有著廣泛的應(yīng)用。產(chǎn)生脈沖信號(hào)的方法有很多種,下面介紹幾種常見的方法。 555定時(shí)器產(chǎn)生脈沖信號(hào) 555定
    的頭像 發(fā)表于 07-15 10:35 ?1419次閱讀
    產(chǎn)生脈沖信號(hào)有<b class='flag-5'>幾種方法</b>

    常見的電機(jī)速度控制方法

      電機(jī)速度控制是電機(jī)應(yīng)用領(lǐng)域的核心技術(shù)之一,它直接關(guān)系到電機(jī)運(yùn)行效率、穩(wěn)定性和使用壽命。隨著電機(jī)技術(shù)的不斷發(fā)展,電機(jī)速度控制方法也日益多樣化。本文將從電機(jī)速度控制的基本原理出發(fā),詳細(xì)
    的頭像 發(fā)表于 06-19 11:50 ?1689次閱讀

    芯海通用 MCU 應(yīng)用筆記:在 MDK 開發(fā)環(huán)境下代碼重定向到 RAM 執(zhí)行的幾種方法

    為 V5.37.0.0。本文檔介紹方法適用于芯??萍?MCU。*附件:應(yīng)用筆記:在MDK開發(fā)環(huán)境下代碼重定向到RAM執(zhí)行的幾種方法.pdf
    發(fā)表于 05-16 11:58

    接地電阻的測(cè)量有哪幾種方法

    接地電阻的測(cè)量對(duì)于確保電氣系統(tǒng)的安全性和可靠性至關(guān)重要。存在幾種不同的方法來(lái)測(cè)量接地電阻,每種方法都有其特定的應(yīng)用場(chǎng)景和技術(shù)要求。
    的頭像 發(fā)表于 05-07 14:17 ?1.4w次閱讀

    改變異步電動(dòng)機(jī)的轉(zhuǎn)速有幾種方法

    改變異步電動(dòng)機(jī)的轉(zhuǎn)速有幾種方法? 改變異步電動(dòng)機(jī)的轉(zhuǎn)速可以通過(guò)以下幾種方法實(shí)現(xiàn):調(diào)節(jié)輸入電壓、改變動(dòng)態(tài)電阻、更換極數(shù)、調(diào)整定子電阻、調(diào)整轉(zhuǎn)子電阻和改變電源頻率等。下面將對(duì)這些方法進(jìn)行詳細(xì)介紹。 1.
    的頭像 發(fā)表于 02-20 11:43 ?1545次閱讀

    電阻應(yīng)變片的溫度補(bǔ)償方法幾種?

    電阻應(yīng)變片的溫度補(bǔ)償方法幾種? 電阻應(yīng)變片的溫度補(bǔ)償方法有以下幾種: 1. 溫度傳感器補(bǔ)償方法 溫度傳感器補(bǔ)償
    的頭像 發(fā)表于 02-04 18:14 ?5636次閱讀

    PWM產(chǎn)生的幾種方法總結(jié)

    PWM產(chǎn)生的方法有很多種,小編常用的幾種產(chǎn)生方法作了一個(gè)整理以及分類,下面我們來(lái)了解一下。
    的頭像 發(fā)表于 01-11 09:15 ?3001次閱讀
    PWM產(chǎn)生的<b class='flag-5'>幾種方法</b>總結(jié)