0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

簡(jiǎn)要分析IGBT模塊的等效熱路模型

QjeK_yflgybdt ? 來(lái)源:英飛凌工業(yè)半導(dǎo)體 ? 作者:周利偉 ? 2021-06-11 17:04 ? 次閱讀

功率器件作為電力電子裝置的核心器件,在設(shè)計(jì)及使用過(guò)程中如何保證其可靠運(yùn)行,一直都是研發(fā)工程師最為關(guān)心的問題。功率器件除了要考核其電氣特性運(yùn)行在安全工作區(qū)以內(nèi),還要對(duì)器件及系統(tǒng)的熱特性進(jìn)行精確設(shè)計(jì),才能既保證器件長(zhǎng)期可靠運(yùn)行,又充分挖掘器件的潛力。而對(duì)功率器件及整個(gè)系統(tǒng)的熱設(shè)計(jì),都是以器件及系統(tǒng)的熱路模型為基礎(chǔ)來(lái)建模分析的,本文對(duì)IGBT模塊的等效熱路模型展開基礎(chǔ)介紹,所述方法及思路也可用于其他功率器件的熱設(shè)計(jì)。

表征熱特性的物理參數(shù)有兩個(gè):熱阻R和熱容C,熱阻R是反映物體對(duì)熱量傳導(dǎo)的阻礙效果,而熱容C則是衡量物質(zhì)所包含熱量的物理量。一般物質(zhì)上都同時(shí)存在熱阻和熱容兩個(gè)特性,并且由于熱阻和熱容特性的同時(shí)作用,又產(chǎn)生了瞬態(tài)熱阻抗Zth的特性。

一般業(yè)界有兩種等效熱路模型來(lái)描述功率器件的熱特性:連續(xù)網(wǎng)絡(luò)模型和局部網(wǎng)絡(luò)模型,又稱Cauer 模型和Foster模型,或者簡(jiǎn)稱T型模型和π型模型。如圖1所示。

pYYBAGDDKQGAb728AAAkKf2SgZI470.jpg

(a)連續(xù)網(wǎng)絡(luò)熱路模型

(也稱Cauer 模型或T型模型)

pYYBAGDDKQaAXTsVAAAssEo5224343.jpg

(b)局部網(wǎng)絡(luò)熱路模型

(也稱Foster模型或π型模型)

圖1.兩種熱路模型示意圖

如圖1(a),Cauer模型的結(jié)構(gòu)比較真實(shí)的反應(yīng)出真實(shí)的熱阻熱容物理結(jié)構(gòu)。如果散熱系統(tǒng)中每一層的材料的特性參數(shù)都已知時(shí),可以通過(guò)理論計(jì)算公式來(lái)建立這種模型。并且,模塊內(nèi)的每一層(從芯片、芯片的焊接層、絕緣襯底、襯底焊接層、到底板)都有一對(duì)R/C參數(shù)來(lái)對(duì)應(yīng),因此通過(guò)圖1(a)中的節(jié)點(diǎn)就可以得到每層物質(zhì)的溫度。但對(duì)實(shí)際系統(tǒng),在熱傳遞中很難確定熱流在每一層中的分布,因此實(shí)際建模時(shí)一般不使用Cauer模型。

與Cauer模型不同,圖1(b)中的Foster模型的R/C參數(shù)雖然不再與各材料層相對(duì)應(yīng),網(wǎng)絡(luò)節(jié)點(diǎn)也沒有任何物理意義,但是該模型中的R/C參數(shù)很容易從實(shí)際測(cè)量得到的瞬態(tài)熱阻抗Zth曲線上擬合提取出來(lái),因此該模型往往用于實(shí)際建模、仿真計(jì)算芯片的結(jié)溫。英飛凌IGBT模塊的數(shù)據(jù)手冊(cè)上就分別給出了IGBT芯片與反并聯(lián)二極管芯片的Zthjc曲線,以及基于Foster模型回路的四階參數(shù)列表(以熱阻ri和時(shí)間常數(shù)τi對(duì)應(yīng)組合的形式),如圖2所示為英飛凌FF600R12ME4模塊的瞬態(tài)熱阻抗曲線。

pYYBAGDDKQ2ACCrnAAD2DA4OzRA413.jpg

(a)IGBT瞬態(tài)熱阻抗曲線

poYBAGDDKROADSVuAADFBMDC2GU509.jpg

(b)反并聯(lián)二極管瞬態(tài)熱阻抗曲線

圖2.英飛凌IGBT模塊瞬態(tài)熱阻抗曲線(基于Foster模型,示例:FF600R12ME4)

圖2中給出的:

poYBAGDDKRuAJeTYAAARSxKIKes103.jpg

動(dòng)態(tài)熱阻曲線可表達(dá)為:

poYBAGDDKSOAaT7IAAAji6bbX_8870.jpg

如果在動(dòng)態(tài)溫升過(guò)程中,IGBT模塊的芯片損耗P(t)是已知的,IGBT模塊底板溫度是已知的,則IGBT及二極管芯片的結(jié)溫均可由以下公式得出:

poYBAGDDKSmAV-YaAAAkHw8OB1g966.jpg

那么IGBT加散熱器的系統(tǒng)建模是用Cauer模型還是Foster模型呢?

用戶經(jīng)常會(huì)想避免測(cè)量的花費(fèi),從而想利用目前已有的IGBT和散熱器熱參數(shù)搭建熱路模型圖。Cauer熱路模型和Foster熱路模型都提供描述了IGBT的結(jié)到殼與散熱器到周圍環(huán)境的熱傳遞過(guò)程。如果要將IGBT和散熱器的模型合并在一起,使用哪個(gè)模型更適合呢?

Cauer熱路模型中的IGBT和散熱器:

pYYBAGDDKTGAbKxWAACXepWo5cs165.jpg

圖3.合并的系統(tǒng)熱路模型——Cauer模型

Cauer熱路模型中每部分都實(shí)際對(duì)應(yīng)各材料層,從而使得熱傳遞過(guò)程物理意義清晰,即各材料層是逐層傳遞熱量的。熱量流動(dòng)(類比于電路中的電流)經(jīng)過(guò)一段時(shí)間延遲后到達(dá)并加熱散熱器。Cauer熱路模型可以通過(guò)仿真或者由一個(gè)測(cè)量的Foster熱路模型變換得到。

通過(guò)對(duì)整個(gè)結(jié)構(gòu)的每一層材料分析和有限元建模仿真,很明顯可以建立一個(gè)Cauer模型。但這只有在包含了某一特定的散熱器時(shí)才是可能的,因?yàn)樯崞鲗?duì)IGBT里熱量的傳遞有相互耦合作用的影響,因此也對(duì)熱響應(yīng)時(shí)間和IGBT的Rthjc有影響。如果實(shí)際中的散熱器與仿真中用的散熱器不一樣,那么就不能通過(guò)仿真來(lái)對(duì)實(shí)際的散熱器進(jìn)行建模。

在數(shù)據(jù)手冊(cè)中一般會(huì)給出Foster熱路模型的參數(shù),因?yàn)檫@是基于測(cè)量得到的結(jié)果??梢詫oster熱路模型進(jìn)行數(shù)學(xué)處理變換為Cauer熱路模型,但是這樣變換的結(jié)果卻不是唯一的,因?yàn)榭梢杂泻芏喾N可能的R/C組合的取值,且變換后新的Cauer熱路模型中的R/C值和節(jié)點(diǎn)都沒有明確的物理意義了。一個(gè)變換后得到的不能與其它熱路模型對(duì)應(yīng)起來(lái)的Cauer熱路模型往往會(huì)帶來(lái)各種錯(cuò)誤。

Foster熱路模型中的IGBT和散熱器:

poYBAGDDKTiASdlSAACYjIP47KM620.jpg

圖4.合并的系統(tǒng)熱路模型——Foster模型

數(shù)據(jù)手冊(cè)里給出的IGBT的Foster熱路模型是根據(jù)采用某一特定散熱器散熱時(shí)測(cè)量得到的。對(duì)于風(fēng)冷的散熱器,由于模塊中的熱流分布廣泛,因此在測(cè)量時(shí)有更好更低的Rthjc。而對(duì)于水冷散熱器,由于熱流分布受限制,因此測(cè)量時(shí)得到相對(duì)更高的Rthjc。英飛凌在數(shù)據(jù)手冊(cè)中描述模塊特性時(shí),是采用基于水冷散熱器的Foster熱路模型,即采用了相對(duì)不利的散熱工作情況來(lái)描述模塊熱特性,因此采用這樣的熱特性做系統(tǒng)設(shè)計(jì)時(shí)對(duì)模塊有更高的安全系數(shù)。

由于IGBT和散熱器的兩個(gè)熱路網(wǎng)絡(luò)串聯(lián),因此注入芯片的功率——類比于圖4中的電流——沒有延時(shí)的立即傳到散熱器上。因此在最初階段,結(jié)溫的上升依賴于采用的散熱器的種類,實(shí)際上是依賴于散熱器的熱容量。

然而,風(fēng)冷系統(tǒng)中散熱器的時(shí)間常數(shù)從幾十到幾百秒,這遠(yuǎn)遠(yuǎn)大于IGBT本身的大約為1s的時(shí)間常數(shù)。在這種情況下,散熱器的溫度上升對(duì)IGBT溫度只有很小程度的影響。而對(duì)于水冷系統(tǒng),這個(gè)影響則很大,由于水冷系統(tǒng)的熱容量相對(duì)低,即時(shí)間常數(shù)相對(duì)較小。因此,對(duì)于“非??臁钡乃渖崞?,例如對(duì)IGBT基板直接水冷的系統(tǒng)而言,應(yīng)該測(cè)量IGBT加上散熱器的整個(gè)系統(tǒng)的Zth。

由于對(duì)模塊中的熱量傳遞有耦合相互作用的影響,因此無(wú)論是在Cauer熱路模型還是在Foster熱路模型中,只要IGBT和散熱器的建模和Zth的測(cè)量是彼此獨(dú)立分開的,IGBT和散熱器的連接使用就可能有問題。而要克服這個(gè)問題,則要將IGBT模塊和散熱器做整體熱建模或者實(shí)測(cè)其瞬態(tài)熱阻抗。一個(gè)完全沒有問題的IGBT加散熱器系統(tǒng)的建模只能通過(guò)測(cè)量熱阻Zthja得到,即同時(shí)對(duì)通過(guò)IGBT的結(jié)、導(dǎo)熱膠和散熱器到環(huán)境的整個(gè)熱量流通路徑進(jìn)行測(cè)量。這就是建立整個(gè)系統(tǒng)的Foster熱路模型,通過(guò)這個(gè)模型就可以準(zhǔn)確地算出結(jié)溫。

一般散熱器廠商會(huì)給出一階的熱平衡時(shí)間即3倍的值,用一階分式擬合可表示為公式:

poYBAGDDKT-Acv1-AAAdIXeoTTE772.jpg

由此得出考慮散熱器熱阻的IGBT結(jié)溫計(jì)算公式為:

pYYBAGDDKUuAAe4ZAAAvvRdh3Kw160.jpg

對(duì)于散熱器熱平衡時(shí)間為幾十秒甚至上百秒的,計(jì)算芯片結(jié)溫Tvj可不用考慮散熱器的溫升,使用公式(3)即可。如果是系統(tǒng)熱平衡時(shí)間是幾秒級(jí)的,需要考慮散熱器溫升時(shí)可使用公式(5)計(jì)算。如需更精確的包括接觸面導(dǎo)熱硅脂的多階熱阻模型,則需要用實(shí)驗(yàn)標(biāo)定曲線Zthja來(lái)提取其模型。

責(zé)任編輯:lq6

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 功率器件
    +關(guān)注

    關(guān)注

    41

    文章

    1794

    瀏覽量

    90572
  • IGBT模塊
    +關(guān)注

    關(guān)注

    8

    文章

    113

    瀏覽量

    16460
  • 散熱系統(tǒng)
    +關(guān)注

    關(guān)注

    0

    文章

    67

    瀏覽量

    10501

原文標(biāo)題:IGBT模塊及散熱系統(tǒng)的等效熱模型

文章出處:【微信號(hào):yflgybdt,微信公眾號(hào):英飛凌工業(yè)半導(dǎo)體】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    功率器件設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)阻計(jì)算二極管浪涌電流

    設(shè)計(jì)基礎(chǔ)系列文章會(huì)比較系統(tǒng)地講解熱設(shè)計(jì)基礎(chǔ)知識(shí),相關(guān)標(biāo)準(zhǔn)和工程測(cè)量方法。上一篇講了兩種等效電路模型,Cauer模型和Foster模型,這一
    的頭像 發(fā)表于 12-11 01:03 ?200次閱讀
    功率器件<b class='flag-5'>熱</b>設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)<b class='flag-5'>熱</b>阻計(jì)算二極管浪涌電流

    功率器件設(shè)計(jì)基礎(chǔ)(七)——等效模型

    /前言/功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、SiCMOSFET高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。功率器件
    的頭像 發(fā)表于 12-03 01:03 ?967次閱讀
    功率器件<b class='flag-5'>熱</b>設(shè)計(jì)基礎(chǔ)(七)——<b class='flag-5'>熱</b><b class='flag-5'>等效</b><b class='flag-5'>模型</b>

    如何通過(guò)等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)來(lái)優(yōu)化回路布局設(shè)計(jì)

    對(duì)于功率轉(zhuǎn)換器,寄生參數(shù)最小的回路PCB布局能夠改善能效比,降低電壓振鈴,并減少電磁干擾(EMI)。本文討論如何通過(guò)最小化PCB的等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)來(lái)優(yōu)化
    的頭像 發(fā)表于 11-25 10:36 ?967次閱讀

    如何計(jì)算IGBT模塊的死區(qū)時(shí)間

    計(jì)算IGBT模塊死區(qū)時(shí)間 1 引言 在現(xiàn)代工業(yè)中,IGBT器件在電壓源逆變器中的使用越來(lái)越廣泛。為了確??煽康厥褂?b class='flag-5'>IGBT,必須避免出現(xiàn)橋臂直通現(xiàn)象。橋臂直通會(huì)產(chǎn)生額外的不必要功耗甚至
    的頭像 發(fā)表于 11-08 10:23 ?1231次閱讀
    如何計(jì)算<b class='flag-5'>IGBT</b><b class='flag-5'>模塊</b>的死區(qū)時(shí)間

    微變等效電路用于分析什么

    微變等效電路是一種用于分析電路中微小變化的電路模型,它可以幫助我們更好地理解和預(yù)測(cè)電路在不同條件下的行為。 一、微變等效電路的概念 1.1 微變等效
    的頭像 發(fā)表于 08-16 15:31 ?1338次閱讀

    請(qǐng)問如何建立MOS或IGBT模型到TINA TI使用?

    請(qǐng)問如何建立MOS或IGBT模型到TINA TI使用
    發(fā)表于 08-14 06:21

    igbt模塊的作用和功能有哪些

    IGBT模塊是一種廣泛應(yīng)用于電力電子領(lǐng)域的功率半導(dǎo)體器件,具有高電壓、大電流、高頻率、高效率等特點(diǎn)。 IGBT模塊的基本概念 IGBT(In
    的頭像 發(fā)表于 08-07 17:06 ?3747次閱讀

    如何計(jì)算IGBT的壽命

    變化量及其對(duì)應(yīng)的循環(huán)次數(shù)(n)。 最后,根據(jù)等效疲勞損傷模型,可以估算出IGBT的疲勞損傷度,并據(jù)此計(jì)算其預(yù)期壽命。 基于整車的預(yù)期壽命和譜信息,我們可以估算出
    的頭像 發(fā)表于 07-31 17:18 ?707次閱讀
    如何計(jì)算<b class='flag-5'>IGBT</b>的壽命

    影響IGBT功率模塊散熱的因素

    IGBT(絕緣柵雙極型晶體管)功率模塊作為電力電子系統(tǒng)中的核心部件,其散熱問題直接影響到系統(tǒng)的穩(wěn)定性、可靠性和效率。以下是對(duì)IGBT功率模塊散熱問題的詳細(xì)
    的頭像 發(fā)表于 07-26 17:24 ?1002次閱讀

    igbt模塊igbt驅(qū)動(dòng)有什么區(qū)別

    IGBT(Insulated Gate Bipolar Transistor)模塊IGBT驅(qū)動(dòng)是電力電子領(lǐng)域中非常重要的兩個(gè)組成部分。它們?cè)谠S多應(yīng)用中發(fā)揮著關(guān)鍵作用,如電機(jī)驅(qū)動(dòng)、電源轉(zhuǎn)換、太陽(yáng)能
    的頭像 發(fā)表于 07-25 09:15 ?1196次閱讀

    微變等效電路和小信號(hào)等效電路分析方法的區(qū)別

    微變等效電路和小信號(hào)等效電路是電子電路分析中兩種不同的分析方法,它們?cè)陔娐吩O(shè)計(jì)和分析中有著廣泛的應(yīng)用。本文將詳細(xì)介紹這兩種電路
    的頭像 發(fā)表于 07-16 09:24 ?1657次閱讀

    微變等效電路和小信號(hào)等效電路的區(qū)別

    微變等效電路和小信號(hào)等效電路是電子電路分析中兩種重要的等效電路方法。它們?cè)陔娐吩O(shè)計(jì)和分析中有著廣泛的應(yīng)用。本文將介紹微變
    的頭像 發(fā)表于 07-15 10:36 ?1820次閱讀

    IGBT模塊的功率損耗詳解

    IGBT模塊關(guān)斷截止時(shí),I(t)≈0,損耗的功率可忽略。為了便于分析,將IGBT損耗分為導(dǎo)通損耗和開關(guān)損耗。
    的頭像 發(fā)表于 05-31 09:06 ?1.5w次閱讀
    <b class='flag-5'>IGBT</b><b class='flag-5'>模塊</b>的功率損耗詳解

    關(guān)于IGBT模塊的散熱設(shè)計(jì)

    由于IGBT模塊自身有一定的功耗,IGBT模塊本身會(huì)發(fā)熱。在一定外殼散熱條件下,功率器件存在一定的溫升(即殼溫與環(huán)境溫度的差異)。
    的頭像 發(fā)表于 03-22 09:58 ?1.8w次閱讀
    關(guān)于<b class='flag-5'>IGBT</b><b class='flag-5'>模塊</b>的散熱設(shè)計(jì)

    SPICE中的模型介紹

    降低性能至關(guān)重要。 在SPICE中,模型可以采用不同的形式和復(fù)雜程度,從簡(jiǎn)單的等效熱電阻網(wǎng)絡(luò)到更復(fù)雜的有限元分析(FEA)模型。
    的頭像 發(fā)表于 02-06 11:28 ?1190次閱讀
    SPICE中的<b class='flag-5'>熱</b><b class='flag-5'>模型</b>介紹